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ABSTRACT

Inverse problems, where in broad sense the task is to learn from the noisy response about some unknown function, usually
represented as the argument of some known functional form, has received wide attention in the general scientific disciplines.
However, in mainstream statistics such inverse problem paradigm does not seem to be as popular. In this article we provide a
brief overview of such problems from a statistical, particularly Bayesian, perspective. We also compare and contrast the above
class of problems with the perhaps more statistically familiar inverse regression problems, arguing that this class of problems
contains the traditional class of inverse problems. In course of our review we point out that the statistical literature is very
scarce with respect to both the inverse paradigms, and substantial research work is still necessary to develop the fields.
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1. Introduction

The similarities and dissimilarities between inverse
problems and the more traditional forward problemsare
usually not clearly explained in theliterature, and often
“ill-posed” is the term used to loosely characterize
inverse problems. We point out that these two problems
may have the same goal or different goal, while both
consider the same model given the data. We first
elucidate using the traditional case of deterministic
differential equations, that the goals of the two problems
may be the same. Consider adynamical system

dx,

T G(t,x,0),

where Gisaknown function and @isaparameter. Inthe
forward problem the goal is to obtain the solution
X = X(0), given 6 and the initial conditions, whereas,
in the inverse problem, the aim isto obtain 6 given the
solution process ;. Redigticaly, thedifferential equation
would be perturbed by noise, and so, one observes the
datay={y,:t=1, ..., T}, where

Yi = 14(6) + &, (1.2)
for noise variables &, having some suitable independent
andidentical (iid) error distribution g, which we assume
to be known for simplicity of illustration. A typical
method of estimating 6, employed by the scientific
community, is the method of calibration, where the
solution of (1.1) would be obtained for each 6-value on
a proposed grid of plausible values, and a set

y(0) = {g.(0):t =1 T} is generated from the
model (1.2) for every such 6 after simulating, for

(1.1)

i=1,..,T, g"q; then forming §j,(0) = z(0) + .

andfinaly reporting that value 6in thegrid asan estimate
of the true values for which ||y —g(#)| is minimized,
given some distance measure || - || ; maximization of the
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correlation between y and ¥ (6) is also considered. In

other words, the calibration method makes use of the
forward technique to estimate the desired quantities of
the model. On the other hand, the inverse problem
paradigm attempts to directly estimate 6 from the
observed datay usually by minimizing somediscrepancy
measure between y and x(6), where x(6) = { x,(6) : t=1,
..., T}. Hence, from this perspective the goals of both
forward and inverse approaches are the same, that is,
estimation of 6. However, the forward approach iswell-
posed, wheress, the inverse approach is often ill-posed.
To clarify, note that within a grid, there always exists

some ¢ that minimizes the the ||y —¢(#)|| anong all

the grid-values. In this sense the forward problem may
be thought of as well-posed. However, direct
minimization of the discrepancy betweeny and x(6) with
respect to © isusually difficult and for high-dimensional
6, the solution to the minimization problem is usually
not unique, and small perturbations of the data causes
large changesin the possible set of solutions, so that the
inverse approach is usually ill-posed. Of course, if the
minimization is sought over a set of grid values of 6
only, then the inverse problem becomes well-posed.

From the statistical perspective, the unknown
parameter 6 of the model needs to be learned, in either
classical or Bayesian way, and hence, in this sensethere
is no real distinction between forward and inverse
problems. Indeed, statistically, sincethedataare modeled
conditionally on the parameters, all problems where
learning the model parameter given the dataisthe goal,
are inverse problems. We remark that the literature
usually considers learning unknown functions from the
datain the realm of inverse problems, but afunction is
nothing but an infinite-dimensional parameter, whichis
avery common learning problem in statistics.
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We now explain when forward and inverse problems
can differ in their aims, and are significantly different
evenfromthe statistical perspective. Togivean example,
consider the palaeoclimate reconstruction problem
discussed in Hadlett et al. [ 18] where the reconstruction
of prehistoric climate at Glendalough in Ireland from
fossil pollen is of interest. The model is built on the
realistic assumption that pollen abundance depends upon
climate, not the other way around. The compositional
pollen data with the modern climates are available at
many modern sitesbut the climate val ues associated with
the fossil pollen data are missing. The inverse nature of
the problemisassociated with thefact that itisof interest
to predict the fossil climate values, given the pollen
assemblages. Theforward problemwould result, if given
the fossil climate vaues (if known), the fossil pollen
abundances (if unknown), were to be predicted.

Technically, given a data set y that depends upon
covariates x, with a probability distribution f(y|x. &)
where 6 is the model parameter, we call the problem
‘inverse’ if it isof interest to predict the corresponding

unknown y givenanew observed y (seeBhattacharya

and Hadlett [9]), after eliminating 6. On the other hand,
the more conventional forward problem considers the
prediction of y for given y with the same probability
distribution, again, after eliminating the unknown
parameter 6. This perspective clearly distinguishes the
forward and inverse problems, as opposed to the other
parameter-learning perspective discussed above, which
ismuch morewidely considered intheliterature. Infact,
with respect to predicting unknown covariates from the
responses, mostly inverselinear regression, particularly
in the classical set-up, has been considered in the
literature. To distinguish thetraditional inverse problems
from the covariate-prediction perspective, we use the
phrase ‘inverse regression’ to refer to the latter. Other
examples of inverse regression are given in section 7.

Our discussion shows that statistically, there is
nothing special about the existing literature on inverse
problemsthat considers estimation of unknown (perhaps,
infinite-dimensional) parameters, and the only class of
problemsthat can betruly regarded asinverse problems
asdistinguished from forward problems arethose which
consider prediction of unknown covariates from the
dependent response data. However, for the sake of
completeness, the traditional inverse problems related
to learning of unknown functions shall occupy a
significant portion of our review.

The rest of the paper is structured as follows. In
section 2 wediscussthe general inverse model, providing
severa examples. In section 3wefocuson linear inverse
problems, which constitute the most popular class of
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inverse problems, and review the links between the
Bayesian approach based on simple finite difference
priors and the deterministic Tikhonov regularization.
Connections between Gaussian process based Bayesian
inverse problems and deterministic regularizations are
reviewed in section 4. In section 5 we provide an
overview of the connections between the Gaussian
process based Bayesian approach and regularization
using differential operators, which generalizes the
discussion of section 3 on the connection between finite
difference priors and the Tikhonov regularization. The
Bayesian approach to inverse problemsin Hilbert spaces
isdiscussedin Section 6. Wethenturn attentionto inverse
regression problems, providing an overview of such
problemsand discussing thelinkswith traditional inverse
problems in section 7. Finally, we make concluding
remarksin section 8.

2. Traditional inverse problem

Suppose that one is interested in learning about the
function 6 given the noisy observed responsesy,,, where
therel ationship between andy,, isgoverned by following
equation (2.1) :

yi = G(Xi! 9) t g, (21)
fori=1, ..., n, wherey; are known covariates or design
points, €, are errors associated with thei-th observation
and Gisaforward operator defined appropriately, which
isusually alowed to be non-injective.

Note that sincee = (€, ..., €n)" is unknown, the
noisy observation vectory, itself may not beintheimage
set of G. If @isap-dimensiona parameter, then there
will often be situations when the number of equationsis
smaller than the number of unknowns, in the sense that
p > n (see, for example, Dashti and Stuart [14]). Modern
statistical research is increasingly coming across such
inverse problemstermed as“ill-posed” which arenot in
the exact domain of statistical estimation procedures
(O’ sullivan [27]) where the maximum likelihood
solution or classical least squares may not be uniquely
defined and with very bad perturbation sensitivity of the
classical solution. However, although such problematic
issues are said to characterize inverse problems, the
problems in fact fall in the so-called “large p small n”
paradigm and has received wide attention in statistics;
see, for example, Buhimann and van de Geer [10],
Giraud [17]. A key concept involved in handling such
problemsisinclusion of some appropriate penalty term
in the discrepancy to be minimized with respect to 6.
Such regularization methods are initiated by Tikhonov
[34] and Tikhonov and Arsenin [35]. Under thismethod,



usualy a criterion of the following form is chosen for
the minimization purpose:

1~y 2
- ; lyi — Gz, 0) + A\ (0), A>0. (2.2)

The functional J is chosen such that highly
implausible or irregular values of 0 has large values
(O’ sullivan [27]). Thus, depending on the problem at
hand, J(6) can be used to induce “sparsity” in an
appropriate sense so that the minimization problem may
be well-defined. We next present several examples of
classical inverse problems based on Aster et al. [3].

2.1. Examples of inverse problems

2.1.1. Vertical seismic profiling

In this scientific field, one wishesto learn about the
vertical seismic velocity of the material surrounding a
borehole. A source generates downward-propagating
seismic wavefront at the surface, and in the borehole, a
string of seismometers sense these seismic waves. The
arrival timesof the seismic wavefront at each instrument
are measured from the recorded seismograms. These
times provide information on the seismic velocity for
vertically traveling waves as a function of depth. The
problemisnonlinear if itisexpressed interms of seismic
velocities. However, we can linearize thisproblemviaa
simple change of variables, asfollows. Letting z denote
the depth, it is possible to parameterize the seismic
structure in terms of slowness, s(z), which is the
reciprocal of the velocity v(z). The observed travel time
at depth z can then be expressed as:

t(z) = /Uz s(u)du = /OG s(u)H(z — u)du, (2.3)

0
where H is the Heaviside step function. The interest is

d(s)

sin(7 (sin(s) + sin(#)))
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to learn about s(z) given observed t(2). Theoreticaly,

& (Z)= M , but in practice, simply differentiating
dz

the observations need not lead to useful solutions because

noiseisgenerally present in the observed timest(z), and

naive differentiation may lead to unrealistic features of

the solution.

2.1.2. Estimation of buried line mass density from
vertical gravity anomaly

Here the problem is to estimate an unknown buried
line mass density m(y) from data on vertical gravity
anomaly, d(x), observed at some height, h. The
mathematical relationship between d(y) and m(y) is
given by

o0

h
i(z) = — —m(u)du.
(( ) /—sc [(3—1)24_}12]? !(T )( U

Asbefore, noisein the datarenders the above linear
inverse problem difficult. Variations of the above
example has been considered in Aster et al. [3].

2.1.3. Estimation of incident light intensity from
diffracted light intensity

Consider an experiment in which an angular
distribution of illumination passesthrough athin dit and
produces a diffraction pattern, for which theintensity is
observed. Thedata, d(s), are measurements of diffracted
light intensity as a function of the outgoing angle
—n/2< s <m/2 Thegoa hereisto obtaintheintensity
of incident light on the dlit, m(6), as a function of the
incoming angle—nt/2< 6 <7/ 2usingthefollowing
mathematical relationship:

2

w /2
- /—ﬂ/?
2.1.4. Groundwater pollution source history
reconstruction problem

Consider the problem of recovering the history of
groundwater pollution at a source site from later
measurements of the contamination at downstream wells
to which the contaminant plume has been transported
by advection and diffusion. The mathematical model for
contamination transport is given by the following
advection-diffusion equation with respect to t and
transported site y:

(cos(s) + m:).t;({)'))2 (

aC a*C

ot T ox
C(0,t) = Cin(t)
C(xz,t) — 0as z — oo.

ac
dx

12
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T (Hirl(s) + sin({))) ) TH_.(Q){J,FQ.

In the equation, D is the diffusion coefficient, v is
the velocity of the groundwater flow, and C;|(t) is the
time history of contaminant injection at x = 0. The
solution to the above advection-diffusion equation is
given by

T
C(x,T) = A Cin(t)f(z, T — t)dt,

where,

fle, T —1) =

x ox (x —v(T — t])2
o /mD(T —0F V| 4D(T —1)

Itisof interest to learn about C, (t) from dataobserved
on C(y, T).
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2.1.5. Transmission tomogr aphy

The most basic physical model for tomography
assumes that wave energy traveling between a source
and receiver can be considered to be propagating along
infinitesimally narrow ray paths. In seismic tomography,
if the slowness at a point y is s(), and the ray path is
known, then thetravel timefor seismic energy transiting
along that ray pathisgiven by thelineintegral along ¢ :

t= /{s(;{.‘(f))dl.

Learning of s() fromtisrequired. Notethat (2.4) is
a high-dimensional generalization of (2.3). In reality,
seismic ray paths will be bent due to refraction and/or
reflection, resulting in nonlinear inverse problem.

The above examples demonstrate the ubiquity of
linear inverse problems. As aresult, in the next section
we take up the case of linear inverse problems and
illustrate the Bayesian approach in details, also
investigating connections with the deterministic
approach employed by the general scientific community.

(2.4)

3. Linear inverse problem

The motivating examples and discussions in this
section are based on Bui-Thanh [11].

Let us consider the following one-dimensional
integral equation on afiniteinterval asinequation (3.1):

G(z,0) = /K(:z:, t) 6(t) dt, (3.2)

where K(y, .) is some appropriate, known, rea-vaued
function given x Now, let the dataset bey,, = (v, Yo, -+
yn)T . Then for aknown system response K(y;;, t) for the
dataset, the equation can be written as follows :

.Ui — / G(.!_.";.H) + €
As

a particular
G(z,0) = [} K(z,t) 6(t) dt, where K(x, t) =

i€{l,2,...,n} (32

example, let

1

N T {=(z = 1)?/2¢”} is the Gaussian kernel

and 6:[0; 1] » Risto be learned given the data y,
and X, = (g, X,) T - We first illustrate the Bayesian
approach and draw connections with the traditional
approach of Tikhonov’sregularization when theintegral
in Gisdiscretized. Inthisregard, let x; = (i—1) / n, for
i=1,..,n Letting®=(8 (xy), ...... (x))" andK bethe
n x n matrix with the (i, j)-th element K(y;, x;) / n, and
€= (€, )T, the discretized version of (3.2) can
be represented as

y,=Ko+e, (3.3

We assume that € , ~ N, (0,, 62I,)), that is, an n-
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variate normal with mean Q,, an n-dimensional vector
with all components zero, and covariance czln, where
I, isthe n-th order identity matrix.

3.1. Smooth prior on 6
To reflect the belief that the function 6 is smooth,
one may presume that

0(z:) = O(xi—1) +0(xip1)

2
where, fori=1,...,n¢ ' N (0,52). Thus apriori,
0(y;) isassumed to be an average of itsnearest neighbors
to quantify smoothness, with an additive random
perturbation term. Letting

+ E'!":

(3.4)

=1 2 =1 0 ws
0 =1 2 =1 0

1
Pt (35)
2
0 [.]' cee =1 2 -1
and €= (éy,..., é,)" it follows from (3.4) that
Lo =¢ (3.6)

Now, n'oting that the Laplacian of a twice-
differentiable real-valued function f with independent

aguments z, ..., z, is given by Af = S5 21 we

dzf

have

Ab(z;) =~ n*(L6),,

where (Le)j isthej-th element of L6.

However, the rank of L is n—1, and boundary
conditions on the Laplacian operator is necessary to
ensure positive definiteness of the operator. In our case,
we assume that 6 = 0 outside [0, 1], so that we now

assume 6(0) = 25 + & and O(z,) = %23=1) 4 ¢,

(37

where &, and €, areiid N (0,6). With thismodification,
the prior on 6 is given by

1 s o

7(6) o exp (— 553 ||L6||3) ; (3.8)
where|| .|| isthe Euclidean norm and

2 -1 0 0

=1l 2 =1 0 =

0o -1 2 -1 0
- 1

0 0 - =1 2 -1

o o0 .- 0 -1 2

Rather than assuming zero boundary conditions,
more generally one may assume that 6(0) and 6(y,) are



distributed asN (0, % ) and N (0,7 ), respectively.
The resulting modified matrix is then given by

200 O 0 0
—] 2 - | 0 Fhs
o -1 2 -1 0
i1
=3 (3.10)
0 0 -1 2 -1
\ 0 0 0 0 24,
To choose 6, and 5, one may assume that
~2 =
Var [0(0)] = J—z = Vorlliz.)] = f_} =
9 o5

e -2 T £ T o™ :
Var [9(_‘1'[:?{-2”] = O"E!_"'“/zi (L L) fl_n/?_;r
where [n/2] isthelargest integer not exceeding n/2, and

€ 1 is the [n/2]-th canonical basis vector in R"*. It
follows that

5 . 1
62 =5 = e .
73
e[:r/'.?] (L L) E".-”/QE

n
Since this requires solving a non-linear equation

(since L contains §,and &), for avoiding computational
complexity one may simply employ the approximation

B )
L) E{n;’?]
where L isgiven by (3.9).

] .Y
0g =0, =

T
€in/2)

3.2. Non-smooth prior on 6

To beginwith, let usassumethat 6 hasseveral points
of discontinuities on the grid of points{ y,,
reflect thisinformation in the prior, one may assumethat

6(0)=0andfori=1,....,n, 6(x) = 6(x,_) + €, where,
asbefore, & areiidN (0, ). Then, with

1 0
-1 1
0

0
0
-1 1

0
0
0

(3.11)
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the prior is given by

1 * 2
(@) o< exp (_EHL a|| )

Onemay also flexibly account for any particular big
jump. For instance, if for somel €{0, ...., n}, the jump
0(x,) — 6 (x,_,) isparticularly large compared to the other

jumps, then it can be assumed that 6(y) = 6 (x,,) + <; .

(3.12)

=2
with €~ N[0.% | where & < 1. Letting D, be the
& |
diagona matrix with &2 being the I-th diagonal element
and 1 being the other diagonal elements, the prior isthen

given by

1 o
7(0) o exp (—@HD“{, 9||2) ,

A more general prior can be envisaged where the
number and location of the jump discontinuities are
unknown. Then we may consider adiagonal matrix D =
diag{¢,, , &}, so that conditionally on the
hyperparameters , .......... €., the prior on Ais given by

1 *
€,) o exp (—@HDL 6’||2) (314)

Prioron &, ....., £ may be considered to complete
the specification. These may also be estimated by
maximizing the marginal likelihood obtained by
integrating out 6, which isknown asthe ML-I1 method;
seeBerger [6]. Calvetti and Somersal0[12] also advocate
likelihood based methods.

3.3. Posterior distribution
For convenience, let us generically denote the
matrices L, L, L, L*, D,L*, DL*, by I'*2. Then it

can be easily verified that the posterior of admits the
following generic form:

(3.13)

s 1 2
Ti'{9|y”.x,,) X ("\p{_ [ﬁ“yn - KG“ T

1 109
2Tl |

Notethat the exponent of the posterior isof theform
of the Tikhonov functional, which we denote by T(6).
The maximizer of the posterior, commonly known as
the maximum a posteriori (MAP) estimator, is given by
Oy ap = argmax 7 (0y,,, x,) = arg min 7'(0).
a a

(3.16)

In other words, the deterministic solution to the

inverse problem obtained by Tikhonov's regularization

is nothing but the Bayesian MAP estimator in our
context.

(3.15)
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Writing H = 5 K" K + &T'~!, which is the Hessian of the Tikhonov functional (regularized misfit), and

writing . ||| g = ||H%-||, it isclear that (3.15) can be simplified to the Gaussian form, given by

i (9|yu-.x.u.) o exp {— HQ — %H—lK—lyn
a

2
(3.17)
i

It follows from (3.17) that the inverse of the Hessian of the regularized misfit is the posterior covariance itself.

From the above posterior it also trivially follows that

1

5 | R
Orap = ;H Ky, = o

-1
1
(;KTK + &—zrl) KTy,

(3.18)

which coincides with the Tikhonov solution for linear inverse problems. The connection between the traditional
deterministic Tikhonov regularization approach with Bayesian analysis continues to hold even if the likelihood is

non-Gaussi an.

3.4. Exploration of the smoothness conditions

For deeper investigation of the smoothness conditions, let uswrite

- - 5 1 o 1 =1 .
Orap =argmin T(0) = o2 (§||y” — y”||2 + EQHI“" 9||2) ,
0

where = K6, p = 02/ and f\é — 1~ %. Now,
from (3.7) it follows that for the smooth priors with the
zero boundary conditions, our Tikhonov functional
discretizes

1 e 1

where || - |22 g 1) = fo (-)%dt.

On the other hand, for the non-smooth prior (3.12),
rather than discretizing V6, that is, the gradient of 6, is
discretized. In other words, for non-smooth priors, our
Tikhonov functional discretizes

1 o 1 .
T’!O(e) = E”yn - ynllz + §Q”vg”iz(ll,])‘ (321)

Hence, realizations of prior (3.12) is less smooth
compared to those of our smooth priors. However, the
realizations (3.12) must be continuous. The priorsgiven
by (3.13) and (3.14) aso support continuous functions
as long as the hyperparameters are bounded away from
zero. These facts, athough clear, can be rigorously
justified by functional analysis arguments, in particular,
using the Sobolev imbedding theorem (see, for example,
Arbogast and Bona[1]).

4. Links between Bayesian inver se problems based
on Gaussian process prior and deterministic
regularizations

In this section, based on Rasmussen and Williams
[31], weillustrate the connections between deterministic
regularizations such as those obtained from differential
operatorsas above, and Bayesian inverse problems based
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on the very popular Gaussian process prior on the
unknown function. A key tool for investigating such
relationship is the reproducing kernel Hilbert space
(RKHS).

4.1. RKHS

We adopt thefollowing definition of RKHS provided
in Rasmussen and Williams [31]:

Definition 4.1 (RKHS). Let H be aHilbert space of
real functions 6 defined on anindex set X . Then H is
called an RKHS endowed with an inner product (-, *)#
(and norm [|6]| o= (0, 0)% ) if there exists a function
K : X x X — R with the following properties:

(& forevery X, K (., X) e H,and

(b) Khas the reproducing
00).K(.z))n = 0(z).

Observethatsince (-, z), K(-,z") € H,itfollows
that (K:( _1.')._ K,'{‘;,!))?{ :}C(a:’ _1.'")_ The Moore-
Aronszajn theorem asserts that the RKHS uniquely
determines C, and vice versa. Formally,

Theorem 1 (Aronszajn [2]). Let X be anindex set.
Then for every positive definite function K (.,.) on
X x X there exists a unique RKHS, and vice versa.

Here, by positive definite function £ (.,.) on X x X,
we mean [ K(z,2")g(z)g(z")dv(z)dv(z") >0 for al
non-zerofunctionsgelL, (X, V), whereL, (X, v) denotes
the space of functions square-integrable on X with
respect to the measure v.

Indeed, the subspace H, of H spanned by the
functions {KC(,, x); i = 1, 2, ...} isdensein H in the
sense that every function in H is a pointwise limit of a

property



Cauchy sequence from #,.

To proceed, we require the concepts of eigenvalues
and eigenfunctions associated with kernels. In the
following section we provide a briefing on these.

4.2. Eigenvalues and eigenfunctions of kernels

Weborrow the statements of thefollowing definition
of eigenvalue and eigenfunction, and the subsequent
statement of Mercer’s theorem from Rasmussen and
Williams [31].

Definition 4.2. A function
integral equation

[ Cla, 2 Y(@)dv(z) = Mo(a),
S X

iscalled an eigenfunction of thekernel C with eigenvalue
A with respect to the measure v.

We assume that the ordering is chosen such that
A, = A, > ... The eigen functions are orthogonal with
respect to v and can be chosen to be normalized so that
Sy Vi(x)0;(x)dv(z) = 65, where §, =1ifi=jand0
otherwise.

The following well-known theorem (see, for
example, Konig [21]) expresses the positive definite

1(-) that obeys the

(4.1)

Aj(C ij{b}—/C{.L ') (x)dv(z

where, for i = 1, ..., n, X, ~ Vv, assuming that v is a

probability measure. Now substituting xX'= x_i ; i = 1,
...... , hin (4.2) yields the following approximate eigen
system for the matrix
,u; = nA;(C)u,, (4.3
where the i-th component of u isgiven by
Uij = b‘i}%ﬂ)» (4.9

Since ‘P. are normalized to have unit norm, it holds that

u]u ,;Zv @)~ [ @) =1. @

From (4.5) it follows that
A (Z) = nA;(C). (4.6)

Indeed, Theorem 3.4 of Baker [5] shows that
A (Zy) = 4 (C), asn — e,

For our purposes the main usefulness of the RKHS
framework is that [|6]; can be perceived as a
generalization of 6T K=L, where 0= (6(xy), ... 8 ()"
andK = (K(Zwl))u =1 isthen x n matrix with (i,
j)-th element K(xl, Z,)

4.3. Inner product

Consider a real positive semidefinite kernel 1C (2,

X’) with an eigenfunction expansion K (X, X’) =
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kernel Cintermsof itseigenvalues and eigenfunctions.

Theorem 2 (Mercer’stheorem). Let (X, V) beafinite
measurespaceand C L (X7, v°) bea positive definite
kernel. By L_, (X7, v?) we mean the set of all measurable
functionsC : x? —= R which are essentially bounded,
that is, bounded up to a set of v>-measure zero. For any
function C in this set, its essential supremum, given by
in{C>0:[C(x,, x,)[<C,; foramostall (X, X,) € X
x X) servesasthenorm|| C||.

Let v € L, (X, V) bethe normalized eigenfunctions
of C associated with the eigenvalues 4,(C) > 0. Then

(a) the eigenvalues {A; (C)} _, are absolutely
summable.

(b) Clz,a') =372, Aj(C); (%)Y bi(x') holds -
almost everywhere, Where the series converges
absolutely and uniformly v2-almost everywhere. In the
above, V¥; denotesthe complex conjugate of ;.

It is important to note the difference between the
eigenvalue kj(C) associated with the kernel C and xj(zn)
where X denotes the n x n Gram matrix with (i, J)-th
element C(Xx,, X). Observe that (see Rasmussen and
Williams [31]):

(4.2)

N : )
> Mt (1), (x') relative to a measure u.

Mercer’s theorem ensures that the eigenfunctions are
orthonormal with respect to u, that is, we have

[ ¢i(x)p;(x)du(x) = 6;;. Consider aHilbert spaceof
Imear comb| nations of the eigenfunctions, that is,
0(x) = YN, 0:6i(z) with =, %
the inner product (91, 0,),, between 6, =
SN 0u0i(@), and By = SN 02,0,(2) is of the
form

N 0.0
1:V2¢
(01,0200 =D == 4.7

i=1

< oo. Then

Thisinducesthenorm|| - ||, where [|0]2, = >N, i—
A smoothness condition on the space is immediately
imposed by requiring the norm to be finite — the
eigenvalues must decay sufficiently fast.

The Hilbert space defined above is a unique RKHS
with respect to k, in that it satisfies the following
reproducing property:

Z I() )\ O (L) .’,[‘-).

(0, K(, (4.8)
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Further, the kernel satisfies the following :

(K(x,-), K(a',-

K(z,2"). (4.9)

Mz

i=1

Now, with referenceto (4.6), observethat the square
norm ||9|2, = SV, #2/); and the quadratic form
0'k0 have the same form if the latter is expressed in

terms of the eigenvectors of «, abeit the latter has n
terms, while the square norm has N terms.

4.4. Regularization

The ill-posed-ness of inverse problems can be
understood from the fact that for any given dataset y,
all functionsthat passthrough the data set minimize any
given measure of discrepancy D(y,,. 8) between the data
y, and @. TO combat this, one considers minimization
of the following regularized functional:

R(9) = D(y,,0) + 5 10]3- (410)

wherethe second term, whichistheregularizer, controls
smoothness of the function and t is the appropriate
Lagrange multiplier.

m(0(z7) Y,

where, for any z* € X,

i(a*) = s"(x

&2 (z*) = K(z*,2*) — 87 (a*

(K(z*,21), ..., Kz, 2.))" .

with s(z*) =

The well-known representer theorem (see, for
example, Kimeldorf andwahba [20], O’ Sullivan et al.
[28], Wahba[38], Scholkopf and Smola[32]) guarantees
that each minimizer 6 € H can be represented as
0(x) = 32i=1 ik (. 2:), where kisthe corresponding
reproducing kernel. If D (y,,. @) isconvex, thenthereis
aunique minimizer ¢ .

4.5. Gaussian process modeling of the unknown
function 0

For simplicity, let us consider the model

y, = G(X‘_)_ +eg (4.112)

for i=1,...,n, wheree; < N(0,02), where we
assume o to beknown for simplicity of illustration. Let
6(y) be modeled by a Gaussian process with mean
function p(y) and covariance kernel k associated with
the RKHS. In other words, for any y € ¥,
E [0(x)] = p(x)and for any zy,x9 € X, Cov (6(x1),
0(w2)) = K(x1,22).

Assuming for convenience that u(y) = 0 for al

x € %, it follows that the posterior distribution of 6(y+)
for any y* € y isgiven by

Observe that the posterior mean admits the following representation:

a(z”

where ¢, isthe i-th element of (K + 51,,) ' y,..

xn) = N (iz*),6%(x%)) (412
) (K +0L) g (4.13)
) (LK +0°L,) " s(z"), (4.14)

= Z EK (2, ), (4.15)

i=1

In other words, the posterior mean of the Gaussian process based model is consistent with the representer theorem.

5. Regularization using differential operatorsand connection with Gaussian process

x=(z1,... ,:i:,;)T

For

€ R, let

2
e = / 2 0T ) (5.1)
Jitetia=m O:I:{l"'(l).'i‘,":;r
and
5.2
| PO = meﬂﬁ 912, 52)
=0
74
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for some M > 0, where the co-efficients b, > 0. In
particular, we assume for our purpose that b, > 0. Itis

clear that || PB||*is translation and rotation invariant.
This norm penalizes 6 in terms of its derivatives up to
order M.

5.1. Relation to RKHS

It can be shown, using the fact that the complex
exponentials exp(2ris™ x) are eigen functions of the
differential operator, that

| PO /Z b (47257s)"™ ‘(3(3)‘2(53, (5.3)

m=(

where g (s) isthe Fourier transform of 6(s). Comparison
of (5.3) with (4.7) yieldsthe power spectrum of theform

M
|Zm =0 bm (4?1—
kernel by Fourier inversion:

)" " Whichyiedsthefollowing

exp(2misT (z — 2")) ds
Zm—(] b"” (4?1-28?"8)?” h
(5.4)
Calculus of variations can aso be used to minimize
R(6) with respect to 6, which yields (using the Euler-
L agrange equation)

= ib;g(x —z
i=1

K(z,z") = K(

r—2a')=

(5.5)

with
m
> (1) V"G = Gy,
i=1
where G isknown asthe Green’sfunction. Using Fourier
transform on (5.6) it can be shown that the Green’s
function is nothing but the kernel K given by (5.4).
Moreover, it follows from (5.6) that

(5.6)

G(z,2") =Gz —2') = {

wherec

form).
We now specializethe above argumentsto the spline

set-up. As before, let us consider the model

yi = 0(x;) + €;, where, fori = 1,...,n, &; * N (0,02).
For simplicity, we consider the one-dl mensional set-up,
and consider the cubic spline smoothing problem that
minimizes

o e constants (see Wahba [38] for the explicit

RASHI 2 (1) : (2017)
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S (=1)™b,, V™ and K areinverses of each other.

Examples of kernels derived from differential
operators are as follows. For d = 1, setting b, = b,, b, =

landb =0for m=2, oneobtains x(y, ") = x{x —x")

= *GXP (—b\x -X |) which is the covariance of the

Ornstein-Uhlenbeck process. For general d dimension,
setting b = b?"/ (m'2m) yidds k(y, ¥) = x(x —%) =
W exp [~z (z — 2)T(z — 2')].

Considering agrid x , note that

M
[PO* = " by (D 60)" (D,,0) = 6" (Z D}D ) 0.
m=0 m=0
(5.7)

where D is a suitable finite-difference approximation
of the differential operator. Note that such finite-
difference approximation has been explored in section
3, which we now investigate in arigorous setting. Also,
since (5.7) isquadratic in 6, assuming a prior for 6, the
logarithm of which hasthisform, and further assuming
thet log[D(y,,, 8)]is alog-likelihood quadratic in 6, a
Gaussian posterior results.

5.2. Spline models and connection with Gaussian
process

Let us consider the penalty functionto be ||£™8||2.
Then polynomials up to degree m— 1 are not penalized
and so, areinthe null space of theregularization operator.
In this case, it can be shown that aminimizer of R(6) is
of the form

k
Zd Pi(x) + ZC,C(T z;
=1
where {1y, ..., 1.} are polynomials that span the null
space and the Green’sfunction Gisgiven by (see Duchon
[15], Meinguet [23])

0(z) = (5.8)

if 2m > d and d even

! | 2m d otherwise

(5.9)

! 2
R(0) = Z(U:—Q( )z-{—'r/] (0" ()] du,

(5.10)
where 0 < x, < ... < %, < 1. The solution to this
minimization problemis given by

9(1)_2{{ r’+z i(z —

§=0

(5.10)
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where, for any y, (x) + =y if x > 0 and zero otherwise.
Following Wahba [37], let us consider
1

f(x) =) _ B’ +6(x), (5.12)

j=0
where 8 = (B, 51)T ~ N (0, J%Hg), and 6 is azero mean Gaussian process with covariance

,l. r)r)

1 M2 3
o2K(x,2") = / (x —u)y(2' —u)pdu =0} (% + %) . (5.13)
S0

wherev=min{y, x}.
Taking ¢ é — oo makesthe prior of S vague, so that penalty on the polynomial termsin the null spaceiseffectively
washed out. It follows that
E0(") |y, xa] = h(z*) B + (") K (y, - H'B), (5.14)
where, for any x, h(x) = (1, )", H = (h(x,), ..., h(x,)), ¥ isthe covariance matrix corresponding to
02K (xi,x;) + 0285, and B = (HK_] H) B HK 'y,.2

Since the elements of s(x*) are piecewise cubic polynomials, it is easy to see that the posterior mean (5.14) is
also a piecewise cubic polynomial. It is also clear that (5.14) is afirst order polynomial on [0, ,] and [y, 1].

5.2.1. Connection with the ¢ -fold integrated Wiener process
Shepp [33] considered the 7 -fold integrated Wiener process, for ¢ =0, 1, 2, ..., asfollows:

T — )
Wolz) = A %Z{u}du, (5.15)

where Z is a Gaussian white noise process with covariance 6(u — u"). As a special case, note that W, is the
standard Wiener process. In our case, note that
K(z,2') = Cov (Wy(x), Wi(z")). (5.16)

The above ideas can be easily extended to the case of the regularizer [ [ (") ()] ? da. for m= 1 by replacing

(x —u), with (x — lf_l / (m—=1) ! and letting h(y) = (1, %, ...., x0T

6. The Bayesian approach to inverse problemsin Hilbert spaces
We assume the following model
y=G(0)+e (6.1)
wherey, 6 and € arein Banach or Hilbert spaces.

6.1. Bayestheorem for general inverse problems

Wewill consider themodel stated by equation (6.1). Let y and © denote the sample spacesfor y and 6, respectively.
Let usfirst assume that both are separable Banach spaces. Assume 1, to be the prior measure for 6. Assuming well-
defined joint distribution for (y, 6), let us denote the posterior of 6 giveny as . Lete~Q, where Q, such that € and

6 are independent. Let Q, be the distribution of &. Let us denote the conditional distribution of y given 6 by Q,,
obtained from atrandation of Q by G(6).

Assumethat 0, < Q. Thus, for some potential ® : © x Y s R,

dQo _ &0
00~ exp (—P(0,y)). (6.2)

Thus, for fixed 9, (6, ) : Y — R ismeasurableand Eq, [exp (—®(0.y))] = 1. Notethat —® (-, y) isnothing
but the log-likelihood.
Let v, denote the product measure
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v (d, dy) = po(d)Qo(dy),
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(6.3)

and let us assumethat @ isv,-measurable. Then (6, y) € © x Yisdistributed according to the measure v(d6, dy)

= u,(d6)Q,(dy). It then also follows that v <<v,, with
!h/lr;
dvo

——(0,y) = exp (—=9(6,y)) .

(6.4)

Then we have the following statement of Bayes' theorem for general inverse problems:

Theorem 3 (Bayes theorem for general inverse problems). Assume that :

and

C = / exp (—®(0,y)) pol(dy) > 0,
Je

®:0 x ) Risv,-measurable

(6.5)

for Q,-almost surely all y. Then the posterior of 6 given y, which we denote by 1, exists under v. Also, ¢/ < u, and

for all y v-almost surely,
dp) 1

0) = = exp(—2(0,y)).

(fﬂn C

Now assume that © and Y are Hilbert spaces. Suppose € ~ N(O, I'). Then the following theorem holds:

Theorem 4 (Vollmer [36]).

where (}1" = (1"—1-.

For themodel y; = 6(z;) +¢,; fori =1,...

6.2. Connection with regularization methods

Itisnot immediately clear if the Bayesian approach
in the Hilbert space setting has connection with the
deterministic regularization methods, but Vollmer [36]
prove consistency of the posterior assuming certain
stability results which are used to prove convergence of
regularization methods; see Engl et al. [16].

We next turn to inverse regression.

7. Inverse regression

We first provide some examples of inverse
regression, mostly based on Avenhaus et al. [4].

7.1. Examples of inverse regression
7.1.1. Example 1: M easurement of nuclear materials

Measurement of the amount of nuclear materialssuch
as plutonium by direct chemical meansis an extremely
difficult exercise. Thismotivates model -based methods.
For instance, there are physical laws relating heat
production or the number of neutrons emitted (the
dependent response variabley) to the amount of material
present, the latter being the independent variable x. But
any measurement instrument based on the physical laws
first needsto be calibrated. In other words, the unknown
parameters of the model needs to be learned, using
known inputs and outputs. However, the independent
variables are usually subject to measurement errors,

RASHI 2 (1) : (2017)

dp ) (yi — 0(z:))”
i X exp ( Z 552 .

-y, and || - || isthe norm induced by (-, -)r.

(6.6)
’ 1 .
B x exp (~3IGO +(.GO)r ). 67
., with ¢, %4 N (0 o?), the posterior is of the form
(6.8)

motivating a statistical model. Thus, conditionally on x
and parameter(s) @,y ~ P(-|z,8), where P(-|z,6),
denotes some appropriate probability model. Given'y,

and x , and some specific ¥, the corresponding § needs
to be predicted.

7.1.2. Example 2: Estimation of family incomes

Suppose that it is of interest to estimate the family
incomes in a certain city through public opinion poll.
Most of the population, however, will be unwilling to
providereliable answersto the questionnaires. One way
to extract relatively reliable figuresisto consider some
dependent variable, say, housing expenses (y), which is
supposed to strongly depend on family income (y); see
Muth [26], and such that the population is less reluctant
to divulge the correct figures related to y. From past
survey data on y, and y,, and using current data from
families who may provide reliable answers related to
bothy andy, astetistical model may bebuilt, usingwhich
the unknown family incomes may be predicted, given
their household incomes.

7.1.3. Example 3: Missing variables

In regression problems where some of the covariate
values , are missing, they may be estimated from the
remaining dataand the model. In this context, Pressand
Scott [29] considered asimplelinear regression problem
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in a Bayesian framework. Under special assumptions
about the error and prior distributions, they showed that
anoptimal procedurefor estimating thelinear parameters
is to first estimate the missing y, from an inverse
regression based only on the complete data pairs.

7.1.4. Example 4: Bioassay

Itisusual to investigate the effects of substances (y)
givenin several dosageson organisms () using bioassay
methods. Inthiscontext it may be of interest to determine
the dosage necessary to obtain some interesting effect,
making inverse regression relevant (see, for example,
Rasch et al. [30]).

7.1.5. Example 5: Learning the Milky Way

Themodelling of the Milky Way galaxy isanintegral
step in the study of galactic dynamics; this is because
knowledge of model parameters that define the Milky
Way directly influences our understanding of the
evolution of our galaxy. Sincethe nature of the Galaxy’s
phase space, in the neighbourhood of the Sun, isaffected
by distinct Milky Way features, measurements of phase
space coordinates of individual stars that live in this
neighbourhood of the Sun, will bear information about
the influence of such features. Then, inversion of such
measurements can help us learn the parameters that
describe such MilkyWay features. Inthisregard, learning
about the location of the Sun with respect to the center
of the galaxy, given the two-component vel ocities of the
starsin thevicinity of the Sun, isan important problem.
For k such stars, Chakrabarty et al. [13] model the kx 2-
dimensional velocity matrix V as a function of the
galactocentric location (S) of the Sun, denoted by
V =§(9). For agiven observed value V* of V, itisthen
of interest to obtain the corresponding S*. Since § is
unknown, Chakrabarty et al. [13] model & as a matrix-
variate Gaussian process, and consider the Bayesian
approach to learning about S, given data{(S,V) :i =1,
..., N} simulated from established astrophysical models,
and the observed velocity matrix V*.

We now provide a brief overview of of the methods
of inverse linear regression, which is the most popular
among inverse regression problems. Our discussion is
generally based on Hoadley [19] and Avenhaus et al.

(4.
7.2. Inverselinear regression

L et usconsider thefollowing simplelinear regression
model: fori=1, ..., n,

Yi= G+ﬁxi+ O&;;

wheree; < N (0, 1).

For simplicity, let us consider a single unknown %,
associated with a further set of m responses
{715 -, U }» related by

(7.2)
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Ui =a+ BT+ 7E;, (7.2)

fori=1,...,mwhere & “* N(0,1) and areindependent
of the ¢'s associated with (7.1).

The interest in the above problem is inference
regarding the unknown . Based on (7.1), first least
sguares estimates of ¢ and 8 are obtained as

S i — ) (i — 1)
Z:;l (z; — 2)? .
& =7y — Bz,
y=> yi/nandy= > x;/n. Then,
letting j = >°"_ | §;/n, ‘Classical’ estimator of x is
given by

B =

(7.3)

(7.4)

where

. j§—a

Te="——,

C _,-"‘J 3

which is a'so the maximum likelihood estimator for the
likelihood associated with (7.1) and (7.2), assuming

known ¢ and t. However,

(7.5)

E|(ic — )% |a, B,0,7, \17} = 00, (7.6)

which prompted Krutchkoff [22] to propose the
following ‘inverse’ estimator:

&y =4+ 07, (7.7)
where,
§ ZL1(U:’ —y)(zi — )
o Y yi—y)? (7.8)
§ =T — b7, (7.9)

aretheleast squares estimators of the slope and intercept
when the y, are regressed on the'y.. It can be shown that
the mean sguare error of thisinverse estimator isfinite.
However, Williams[39] showed that if 62 =12 and if the
sign of Bisknown, then the unique unbiased estimator
of x hasinfinite variance. Williams advocated the use of
confidence limits instead of point estimators.

Hoadley [19] derive confidence limits settingc =1
and assuming without loss of generality that
S i = 0. Under these assumptions, the maximum
likelihood estimators of o® with x and y_ only,
Yo = 1y, 7)T only, and with the entire available

data set are, respectively,

T

52 ! A A 2.
oi=—5> (n—-a-pu):

(7.10)
i=1
1 T i .
02 = 7 ; (7 —9) (7.11)
6% = _ [(n—2)0} + (m —1)03] .
n—2+m-—1
(7.12)
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Now consider the F-statistic 77 — 252 for testi ng the hypothesis 8 = 0. Note that under the null hypothesisthis
statistic has the F distribution with 1 and n + mdegrees of freedom. For m=1,

B(&c — )

has at distribution with n —2 degrees of freedom. Letting F_,

T

o2(n+ 1+ a2)

, denote the upper o point of the F distribution with

1 and v degrees of freedom, a confidence set Scan be denved asfollows

{z:2, <z <ay} if
S = {z:e<azptu{ezaxy} if
(—00,00) if

where y, and y,, are given by

Fic + {f‘n:I.H—Q [(”—i_l)(f‘_

+1 .
B Ff::l.u.—‘z < F < Ftt:l.u—?t

+1+35

F > i"':-.:1.::—2:
(7.13)
F < ﬁgff1fn:l.:i—2-

1
b

nln 2)+ﬁr(]}

F— F:r:l.n -1

Hence, if I < —2tl

useless.

n+l+idg

F_Frn:l,n 2

— 5 Fla1,n—2. then the associated confidence interval is S = (—oo, o0), which is of course

Hoadley [19] present a Bayesian analysis of this problem, presented below in the form of the following two

theorems.

Theorem 5 (Hoadley [19]). Assume that o = 7, and let ¥ be independent of (¢, B, 6®) a priori. With any prior

() on y and the prior

1
q -2\
m(a, 3,07) x o

on (e, B, 6%, the posterior density of x given by

m(x|Y,, Xn, Y,,) x 7(x)L(x),

where,

L(x) =

(1+ 2 +22) 2

where,
R=

For m= 1, Hoadley [19] present the following result
characterizing the inverse estimator 7;:

Theorem 6 (Hoadley [19]). Consider the following
informative prior on y:

n+1
I = t,,_;;” — 3

where t, denotes the t distribution with v degrees of
freedom. Then the posterior distribution of y giveny,
X, and g, hasthe same distribution as

-%I +th-2
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[1 + -+ RiZ + (m s+ l) (z — R.‘f-’<,-)2] o

___F
F+m+n-3

In particular, it follows from Theorem 6 that the
posterior mean of x is &; when m = 1. In other words,
the inverse estimator Z; is Bayes with respect to the
squared error loss and a particular informative prior
distribution for .

Since the goal of Hoadley [19] was to provide a
theoretical justification of the inverse estimator, he had
to choose asomewhat unusual prior so that it leadsto &4
as the posterior mean. In general it is not necessary to
confine ourselves to any specific prior for Bayesian
analysis of inverse regression. It is aso clear that the
Bayesian framework is appropriate for any inverse
regression problem, not just linear inverse regression;
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indeed, the palaeoclimate reconstruction problem
(Haslett et al. [18]) and the MilkyWay problem
(Chakrabarty et al. [13]) are examples of very highly
non-linear inverse regression problems.

7.3. Connection between inver seregression problems
and traditional inverse problems

Note that the class of inverse regression problems
includes the class of traditional inverse problems. The
Milky Way problem is an example where learning the
unknown, matrix-variate function & (inverse problem)
was required, even though learning about S, the
galactocentric location of the sun (inverse regression
problem) wasthe primary goal. The Bayesian approach
allowed learning both S and & simultaneously and
coherently.

In the palaeoclimate models proposed in Haslett
et al. [18], Bhattacharya [7] and Mukhopadhyay and
Bhattacharya [25], although species assemblages are
modeled conditionally on climate variables, the
functional relationship between species and climate are
not even approximately known. In all these works, it is
of interest to learn about the functional relationship as
well asto predict the unobserved climate values, thel atter
being the main aim. Again, the Bayesian approach
facilitated appropriate learning of both the unknown
quantities.

7.4. Consistency of inverse regression problems

In the above linear inverse regression, notice that if
T > 0, then the variance of the estimator of x can not
tend to zero, even asthe data size tends to infinity. This

showsthat no estimator of ¢ can be consistent. The same
argument applies even to Bayesian approaches; for any
sensible prior on y that does not give point mass to the
true value of y, the posterior of y will not converge to
the point mass at the true value of y as the data size
increases indefinitely. The arguments remain valid for
any inverse regression problem where the response
variable y probabilistically depends upon the
independent variable . Not only in inverse regression
problems, even in forward regression problems where
theinterest isin prediction of y given x, any estimate of
y or any posterior predictive distribution y will be
inconsistent.

To give an example of inconsistency in non-linear
and non-normal inverse problem, consider thefollowing
set-up: ¥, ¢« Pojsson (Ox,- ) fori =1, ..., n, where
0 >0andy, >0 for each i. Let us consider the prior
n(6) = 1 for all 6> 0. For somei* {1, ..., n} let us
assume the leave-one-out cross-validation set-up in that
we wish to learn y = y,, assuming it is unknown, from
therest of the data. Putting the prior (y) = 1 for x > 0,
the posterior of y is given by (see Bhattacharya and
Hadlett [9], Bhattacharya [8])

x¥
(@ + 3 ay) = vt
(7.19)

Figure 7.1 displays the posterior of y when i = 10,

for increasing sample size. Observe that the variance of

the posterior does not decrease even with sample sizeas
large as 100; 000, clearly demonstrating inconsistency.

ﬂ(:-i-'|xn\-'r." 1 yn) x

Posterior of x

0.15 020 0.25 030
| 1 [ |

posterior density

0.10
|

n=10

n=100

n=1000

n=10000

M= 100000
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Hence, special, innovative priors are necessary for
consistency in such cases.

8. Conclusion

Inthisreview article, wehave clarified thesimilarities
and dissimilarities between the traditional inverse
problems and the inverse regression problems. In
particular, we have argued that only the latter class of
problems qualify as authentic inverse problems in they
have significantly different goals compared to the
corresponding forward problems. Moreover, they include
the traditional inverse problems on learning unknown

Figure7.1: Demonstration of posterior inconsistency
ininverseregression problems. Thevertical linedenotes
thetruevalue. functionsasaspecial case, asexemplified
by our palaeoclimate and Milky Way examples. We
advocate the Bayesian paradigm for both classes of
problems, not only because of its inherent flexibility,
coherency and posterior uncertainty quantification, but
also because the prior acts as anatural penalty whichis
very important to regularize the so-called ill-posed
inverse problems. Thewell-known Tikhonov regularizer
isjust aspecial case from this perspective.

Itisimportant to remark that theliteratureoninverse
function learning problems and inverse regression
problems is still very young and a lot of research is
necessary to develop the fields. Specificaly, there is
hardly any well-devel oped, consistent model adequacy
test or model comparison methodology in either of the
two fields, although Mohammad-Djafari [24] dea with
some specific inverse problems in this context, and
Bhattacharya [8] propose atest for model adequacy in
the case of inverse regression problems. Moreover, as
we have demonstrated, inverse regression problems are
inconsistent in general. The general development inthese
respects will be provided in the PhD thesis of the first
author.
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