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ABSTRACT

Inverse problems, where in broad sense the task is to learn from the noisy response about some unknown function, usually
represented as the argument of some known functional form, has received wide attention in the general scientific disciplines.
However, in mainstream statistics such inverse problem paradigm does not seem to be as popular. In this article we provide a
brief overview of such problems from a statistical, particularly Bayesian, perspective. We also compare and contrast the above
class of problems with the perhaps more statistically familiar inverse regression problems, arguing that this class of problems
contains the traditional class of inverse problems. In course of our review we point out that the statistical literature is very
scarce with respect to both the inverse paradigms, and substantial research work is still necessary to develop the fields.
Keywords : Bayesian analysis, inverse problems, inverse regression problems, regularization, reproducing kernel Hilbert space
(RKHS), palaeoclimate reconstruction

1.  Introduction
The similarities and dissimilarities between inverse

problems and the more traditional forward problems are
usually not clearly explained in the literature, and often
“ill-posed” is the term used to loosely characterize
inverse problems. We point out that these two problems
may have the same goal or different goal, while both
consider the same model given the data. We first
elucidate using the traditional case of deterministic
differential equations, that the goals of the two problems
may be the same. Consider a dynamical system

(1.1)

where G is a known function and θ is a parameter. In the
forward problem the goal is to obtain the solution
χt  ≡  χt(θ), given θ and the initial conditions, whereas,
in the inverse problem, the aim is to obtain θ given the
solution process χt. Realistically, the differential equation
would be perturbed by noise, and so, one observes the
data y = {yt : t = 1, .....,  T}, where

yt = χt(θ) + εt, (1.2)
for noise variables εt having some suitable independent
and identical (iid) error distribution q, which we assume
to be known for simplicity of illustration. A typical
method of estimating θ, employed by the scientific
community, is the method of calibration, where the
solution of (1.1) would be obtained for each θ-value on
a proposed grid of plausible values, and a set

is generated from the
model (1.2) for every such θ after simulating, for

i = 1, ..., T, q; then forming 
and finally reporting that value θ in the grid as an estimate
of the true values for which  is minimized,
given some distance measure ; maximization of the

correlation between y and (θ) is also considered. In
other words, the calibration method makes use of the
forward technique to estimate the desired quantities of
the model. On the other hand, the inverse problem
paradigm attempts to directly estimate θ from the
observed data y usually by minimizing some discrepancy
measure between y and x(θ), where x(θ) = {χt(θ) : t = 1,
..., T}. Hence, from this perspective the goals of both
forward and inverse approaches are the same, that is,
estimation of θ. However, the forward approach is well-
posed, whereas, the inverse approach is often ill-posed.
To clarify, note that within a grid, there always exists
some  that minimizes the  among all
the grid-values. In this sense the forward problem may
be thought of as well-posed. However, direct
minimization of the discrepancy between y and x(θ) with
respect to Θ is usually difficult and for high-dimensional
θ, the solution to the minimization problem is usually
not unique, and small perturbations of the data causes
large changes in the possible set of solutions, so that the
inverse approach is usually ill-posed. Of course, if the
minimization is sought over a set of grid values of θ
only, then the inverse problem becomes well-posed.

From the statistical perspective, the unknown
parameter θ of the model needs to be learned, in either
classical or Bayesian way, and hence, in this sense there
is no real distinction between forward and inverse
problems. Indeed, statistically, since the data are modeled
conditionally on the parameters, all problems where
learning the model parameter given the data is the goal,
are inverse problems. We remark that the literature
usually considers learning unknown functions from the
data in the realm of inverse problems, but a function is
nothing but an infinite-dimensional parameter, which is
a very common learning problem in statistics.
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We now explain when forward and inverse problems
can differ in their aims, and are significantly different
even from the statistical perspective. To give an example,
consider the palaeoclimate reconstruction problem
discussed in Haslett et al. [18] where the reconstruction
of prehistoric climate at Glendalough in Ireland from
fossil pollen is of interest. The model is built on the
realistic assumption that pollen abundance depends upon
climate, not the other way around. The compositional
pollen data with the modern climates are available at
many modern sites but the climate values associated with
the fossil pollen data are missing. The inverse nature of
the problem is associated with the fact that it is of interest
to predict the fossil climate values, given the pollen
assemblages. The forward problem would result, if given
the fossil climate values (if known), the fossil pollen
abundances (if unknown), were to be predicted.

Technically, given a data set y that depends upon
covariates x, with a probability distribution 
where θ is the model parameter, we call the problem
‘inverse’ if it is of interest to predict the corresponding

unknown  given a new observed  (see Bhattacharya
and Haslett [9]), after eliminating θ. On the other hand,
the more conventional forward problem considers the

prediction of  for given  with the same probability
distribution, again, after eliminating the unknown
parameter θ. This perspective clearly distinguishes the
forward and inverse problems, as opposed to the other
parameter-learning perspective discussed above, which
is much more widely considered in the literature. In fact,
with respect to predicting unknown covariates from the
responses, mostly inverse linear regression, particularly
in the classical set-up, has been considered in the
literature. To distinguish the traditional inverse problems
from the covariate-prediction perspective, we use the
phrase ‘inverse regression’ to refer to the latter. Other
examples of inverse regression are given in section 7.

Our discussion shows that statistically, there is
nothing special about the existing literature on inverse
problems that considers estimation of unknown (perhaps,
infinite-dimensional) parameters, and the only class of
problems that can be truly regarded as inverse problems
as distinguished from forward problems are those which
consider prediction of unknown covariates from the
dependent response data. However, for the sake of
completeness, the traditional inverse problems related
to learning of unknown functions shall occupy a
significant portion of our review.

The rest of the paper is structured as follows. In
section 2 we discuss the general inverse model, providing
several examples. In section 3 we focus on linear inverse
problems, which constitute the most popular class of
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inverse problems, and review the links between the
Bayesian approach based on simple finite difference
priors and the deterministic Tikhonov regularization.
Connections between Gaussian process based Bayesian
inverse problems and deterministic regularizations are
reviewed in section 4. In section 5 we provide an
overview of the connections between the Gaussian
process based Bayesian approach and regularization
using differential operators, which generalizes the
discussion of section 3 on the connection between finite
difference priors and the Tikhonov regularization. The
Bayesian approach to inverse problems in Hilbert spaces
is discussed in Section 6. We then turn attention to inverse
regression problems, providing an overview of such
problems and discussing the links with traditional inverse
problems in section 7. Finally, we make concluding
remarks in section 8.

2. Traditional inverse problem
Suppose that one is interested in learning about the

function θ given the noisy observed responses yn, where
the relationship between  and yn is governed by following
equation (2.1) :

yi = G(χi, θ) + εi, (2.1)
for i = 1, ...., n, where χi are known covariates or design
points, ∈i are errors associated with the i-th observation
and G is a forward operator defined appropriately, which
is usually allowed to be non-injective.

Note that since ∈n = (∈1, ...., ∈n)T is unknown, the
noisy observation vector yn itself may not be in the image
set of G. If  θ is a p-dimensional parameter, then there
will often be situations when the number of equations is
smaller than the number of unknowns, in the sense that
p > n (see, for example, Dashti and Stuart [14]). Modern
statistical research is increasingly coming across such
inverse problems termed as “ill-posed” which are not in
the exact domain of statistical estimation procedures
(O’Sullivan [27]) where the maximum likelihood
solution or classical least squares may not be uniquely
defined and with very bad perturbation sensitivity of the
classical solution. However, although such problematic
issues are said to characterize inverse problems, the
problems in fact fall in the so-called “large p small n”
paradigm and has received wide attention in statistics;
see, for example, Bühlmann and van de Geer [10],
Giraud [17]. A key concept involved in handling such
problems is inclusion of some appropriate penalty term
in the discrepancy to be minimized with respect to θ.
Such regularization methods are initiated by Tikhonov
[34] and Tikhonov and Arsenin [35]. Under this method,
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usually a criterion of the following form is chosen for
the minimization purpose:

(2.2)

The functional J is chosen such that highly
implausible or irregular values of θ has large values
(O’Sullivan [27]). Thus, depending on the problem at
hand, J(θ) can be used to induce “sparsity” in an
appropriate sense so that the minimization problem may
be well-defined. We next present several examples of
classical inverse problems based on Aster et al. [3].

2.1. Examples of inverse problems
2.1.1. Vertical seismic profiling
In this scientific field, one wishes to learn about the

vertical seismic velocity of the material surrounding a
borehole. A source generates downward-propagating
seismic wavefront at the surface, and in the borehole, a
string of seismometers sense these seismic waves. The
arrival times of the seismic wavefront at each instrument
are measured from the recorded seismograms. These
times provide information on the seismic velocity for
vertically traveling waves as a function of depth. The
problem is nonlinear if it is expressed in terms of seismic
velocities. However, we can linearize this problem via a
simple change of variables, as follows. Letting z denote
the depth, it is possible to parameterize the seismic
structure in terms of slowness, s(z), which is the
reciprocal of the velocity v(z). The observed travel time
at depth z can then be expressed as:

(2.3)

where H is the Heaviside step function. The interest is

to learn about s(z) given observed t(z). Theoretically,

 , but in practice, simply differentiating

the observations need not lead to useful solutions because
noise is generally present in the observed times t(z), and
naive differentiation may lead to unrealistic features of
the solution.

2.1.2. Estimation of buried line mass density from
vertical gravity anomaly

Here the problem is to estimate an unknown buried
line mass density m(χ) from data on vertical gravity
anomaly, d(χ), observed at some height, h. The
mathematical relationship between d(χ) and m(χ) is
given by

As before, noise in the data renders the above linear
inverse problem difficult. Variations of the above
example has been considered in Aster et al. [3].

2.1.3. Estimation of incident light intensity from
diffracted light intensity

Consider an experiment in which an angular
distribution of illumination passes through a thin slit and
produces a diffraction pattern, for which the intensity is
observed. The data, d(s), are measurements of diffracted
light intensity as a function of the outgoing angle
– π / 2 ≤  s  ≤ π / 2. The goal here is to obtain the intensity
of incident light on the slit, m(θ), as a function of the
incoming angle – π / 2 ≤  θ  ≤ π / 2 using the following
mathematical relationship:

2.1.4. Groundwater pollution source history
reconstruction problem

Consider the problem of recovering the history of
groundwater pollution at a source site from later
measurements of the contamination at downstream wells
to which the contaminant plume has been transported
by advection and diffusion. The mathematical model for
contamination transport is given by the following
advection-diffusion equation with respect to t and
transported site χ:

In the equation, D is the diffusion coefficient, v is
the velocity of the groundwater flow, and Cin(t) is the
time history of contaminant injection at χ = 0. The
solution to the above advection-diffusion equation is
given by

where,

It is of interest to learn about Cin(t) from data observed
on C(χ, T).
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2.1.5. Transmission tomography
The most basic physical model for tomography

assumes that wave energy traveling between a source
and receiver can be considered to be propagating along
infinitesimally narrow ray paths. In seismic tomography,
if the slowness at a point χ is s(χ), and the ray path is
known, then the travel time for seismic energy transiting
along that ray path is given by the line integral along :

(2.4)

Learning of s(χ) from t is required. Note that (2.4) is
a high-dimensional generalization of (2.3). In reality,
seismic ray paths will be bent due to refraction and/or
reflection, resulting in nonlinear inverse problem.

The above examples demonstrate the ubiquity of
linear inverse problems. As a result, in the next section
we take up the case of linear inverse problems and
illustrate the Bayesian approach in details, also
investigating connections with the deterministic
approach employed by the general scientific community.

3. Linear inverse problem
The motivating examples and discussions in this

section are based on Bui-Thanh [11].
Let us consider the following one-dimensional

integral equation on a finite interval as in equation (3.1):

(3.1)

where K(χ, .) is some appropriate, known, real-valued
function given χ Now, let the dataset be yn = (y1, y2, ...,
yn)T . Then for a known system response K(χi, t) for the
dataset, the equation can be written as follows :

(3.2)

As a particular example, let

 dt, where Κ(χ, t) =

 is the Gaussian kernel
and  θ : [0; 1] is to be learned given the data yn
and xn = (χ1,....., xn)T . We first illustrate the Bayesian
approach and draw connections with the traditional
approach of Tikhonov’s regularization when the integral
in G is discretized. In this regard, let χi = (i – 1) / n, for
i = 1, ...., n. Letting θ = (θ (χ1), .....,  (χn))T and K be the
n × n matrix with the (i, j)-th element K(χi, χj) / n, and
∈n = (∈1, ....., ∈n)T , the discretized version of (3.2) can
be represented as

yn = K θ + ∈n (3.3)
We assume that ∈n ~ Nn (0n, σ2In),  that is, an n-

variate normal with mean 0n, an n-dimensional vector
with all components zero, and covariance σ2In, where
In is the n-th order identity matrix.

3.1. Smooth prior on θθθθθ
To reflect the belief that the function θ is smooth,

one may presume that

(3.4)

where, for i = 1, ...., n,  Thus, a priori,
θ(χi) is assumed to be an average of its nearest neighbors
to quantify smoothness, with an additive random
perturbation term. Letting

(3.5)

and   , it follows from (3.4) that
(3.6)

Now, noting that the Laplacian of a twice-
differentiable real-valued function f with independent

arguments z1, ...., zk is given by  we
have

(3.7)
where (Lθ)j is the j-th element of Lθ.
However, the rank of L is n–1, and boundary

conditions on the Laplacian operator is necessary to
ensure positive definiteness of the operator. In our case,
we assume that θ ≡ 0 outside [0, 1], so that we now
assume  

where  and are iid N . With this modification,
the prior on θ is given by

(3.8)

where || . ||  is the Euclidean norm and

 (3.9)

Rather than assuming zero boundary conditions,
more generally one may assume that θ(0) and θ(χn) are
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distributed as N   respectively.
The resulting modified matrix is then given by

(3.10)

To choose δ0 and δn one may assume that

 

 

where [n/2] is the largest integer not exceeding n/2, and
∈[n/2] is the [n/2]-th canonical basis vector in . It
follows that

Since this requires solving a non-linear equation
(since  contains δ0 and δn), for avoiding computational
complexity one may simply employ the approximation

where  is given by (3.9).

3.2. Non-smooth prior on θθθθθ
To begin with, let us assume that θ has several points

of discontinuities on the grid of points {χ0, ....., χn}. To
reflect this information in the prior, one may assume that
θ(0) = 0 and for i = 1, ....., n, θ(χi) = θ(χi–1) + , where,

as before,  are iid N . Then, with

(3.11)

the prior is given by

(3.12)

One may also flexibly account for any particular big
jump. For instance, if for some l ∈{0, ...., n}, the jump
θ(χl) – θ (χl–1) is particularly large compared to the other

jumps, then it can be assumed that θ(χl) = θ (χl–1) + ,

with , where ξ < 1. Letting Dl be the

diagonal matrix with ξ2 being the l-th diagonal element
and 1 being the other diagonal elements, the prior is then
given by

(3.13)

A more general prior can be envisaged where the
number and location of the jump discontinuities are
unknown. Then we may consider a diagonal matrix D =
diag{ξ1, ....., ξn}, so that conditionally on the
hyperparameters ξ1, ..........ξn, the prior on θ is given by

(3.14)

Prior on ξ1, ....., ξn may be considered to complete
the specification. These may also be estimated by
maximizing the marginal likelihood obtained by
integrating out θ, which is known as the ML-II method;
see Berger [6]. Calvetti and Somersalo [12] also advocate
likelihood based methods.

3.3. Posterior distribution
For convenience, let us generically denote the

matrices  by Γ–1/2. Then it
can be easily verified that the posterior of  admits the
following generic form:

                            (3.15)

Note that the exponent of the posterior is of the form
of the Tikhonov functional, which we denote by T(θ).
The maximizer of the posterior, commonly known as
the maximum a posteriori (MAP) estimator, is given by

(3.16)
In other words, the deterministic solution to the

inverse problem obtained by Tikhonov’s regularization
is nothing but the Bayesian MAP estimator in our
context.

Chatterjee and Bhattacharya
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Writing which is the Hessian of the Tikhonov functional (regularized misfit), and

writing  it is clear that (3.15) can be simplified to the Gaussian form, given by

(3.17)

It follows from (3.17) that the inverse of the Hessian of the regularized misfit is the posterior covariance itself.
From the above posterior it also trivially follows that

(3.18)

which coincides with the Tikhonov solution for linear inverse problems. The connection between the traditional
deterministic Tikhonov regularization approach with Bayesian analysis continues to hold even if the likelihood is
non-Gaussian.

3.4. Exploration of the smoothness conditions
For deeper investigation of the smoothness conditions, let us write

(3.19)

where . Now,
from (3.7) it follows that for the smooth priors with the
zero boundary conditions, our Tikhonov functional
discretizes

(3.20)

where 
On the other hand, for the non-smooth prior (3.12),

rather than discretizing ∇θ, that is, the gradient of θ, is
discretized. In other words, for non-smooth priors, our
Tikhonov functional discretizes

(3.21)

Hence, realizations of prior (3.12) is less smooth
compared to those of our smooth priors. However, the
realizations (3.12) must be continuous. The priors given
by (3.13) and (3.14) also support continuous functions
as long as the hyperparameters are bounded away from
zero. These facts, although clear, can be rigorously
justified by functional analysis arguments, in particular,
using the Sobolev imbedding theorem (see, for example,
Arbogast and Bona [1]).

4. Links between Bayesian inverse problems based
on Gaussian process prior and deterministic
regularizations

In this section, based on Rasmussen and Williams
[31], we illustrate the connections between deterministic
regularizations such as those obtained from differential
operators as above, and Bayesian inverse problems based

on the very popular Gaussian process prior on the
unknown function. A key tool for investigating such
relationship is the reproducing kernel Hilbert space
(RKHS).

4.1. RKHS
We adopt the following definition of RKHS provided

in Rasmussen and Williams [31]:
Definition 4.1 (RKHS). Let  be a Hilbert space of

real functions θ defined on an index set  . Then  is
called an RKHS endowed with an inner product 
(and norm  = θ, θ ) if there exists a function

 with the following properties:
(a) for every ,  (., ) ∈ , and
(b) has the reproducing property

Observe that since  it follows
that  The Moore-
Aronszajn theorem asserts that the RKHS uniquely
determines , and vice versa. Formally,

Theorem 1 (Aronszajn [2]).  Let  be an index set.
Then for every positive definite function (.,.) on

 ×  there exists a unique RKHS, and vice versa.
Here, by positive definite function (.,.) on  × ,

we mean 0 for all
non-zero functions g ∈L2 ( , v), where L2 ( , v) denotes
the space of functions square-integrable on  with
respect to the measure v.

Indeed, the subspace 0 of  spanned by the
functions { (., xi); i = 1, 2, ...} is dense in  in the
sense that every function in  is a pointwise limit of a

A Statistical Perspective of Inverse and Inverse Regression Problems
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Cauchy sequence from 0.
To proceed, we require the concepts of eigenvalues

and eigenfunctions associated with kernels. In the
following section we provide a briefing on these.

4.2. Eigenvalues and eigenfunctions of kernels
We borrow the statements of the following definition

of eigenvalue and eigenfunction, and the subsequent
statement of Mercer’s theorem from Rasmussen and
Williams [31].

Definition 4.2. A function   that obeys the
integral equation

(4.1)

is called an eigenfunction of the kernel C with eigenvalue
λ  with respect to the measure v.

We assume that the ordering is chosen such that
λ1 ≥ λ2 ≥ .... The eigen functions are orthogonal with
respect to v and can be chosen to be normalized so that

 where δij = 1 if i = j and 0
otherwise.

The following well-known theorem (see, for
example, König [21]) expresses the positive definite

kernel C in terms of its eigenvalues and eigenfunctions.
Theorem 2 (Mercer’s theorem). Let ( , v) be a finite

measure space and C ∈L∞ ( 2, v2) be a positive definite
kernel. By L∞ ( 2, v2) we mean the set of all measurable
functions C : 2  which are essentially bounded,
that is, bounded up to a set of v2-measure zero. For any
function C in this set, its essential supremum, given by
in {C ≥ 0 : |C( 1, 2)| < C; for almost all ( 1, 2) ∈ 
× ) serves as the norm || C ||.

Let  ∈ L2 ( , v) be the normalized eigenfunctions
of C associated with the eigenvalues λj(C) > 0. Then

(a) the eigenvalues  are absolutely
summable.

(b) -
almost everywhere, where the series converges
absolutely and uniformly v2-almost everywhere. In the
above,   denotes the complex conjugate of  .

It is important to note the difference between the
eigenvalue λj(C) associated with the kernel C and λj(Σn)
where Σn denotes the n × n Gram matrix with (i, j)-th
element C( i, j). Observe that (see Rasmussen and
Williams [31]):

Chatterjee and Bhattacharya

(4.2)

where, for i = 1, ...,  n, xi ∼ v, assuming that v is a
probability measure. Now substituting x′= x_i ; i = 1,
......, n in (4.2) yields the following approximate eigen
system for the matrix Σn :

(4.3)
where the i-th component of uj is given by

 (4.4)

Since  Ψj are normalized to have unit norm, it holds that

   (4.5)

From (4.5) it follows that
(4.6)

Indeed, Theorem 3.4 of Baker [5] shows that
n–1 λj (Σn) → λj (C), as n → ∞.

For our purposes the main usefulness of the RKHS

framework is that  can be perceived as a
generalization of θT K–1, where θ = (θ (χ1), ....., θ⎯(χn))T

and K = (K(χi; χj))i, j=1, ...., n, is the n × n matrix with (i,
j)-th element K(χi, χj).

4.3. Inner product
Consider a real positive semidefinite kernel ( ,

′) with an eigenfunction expansion  ( , ′) =

 relative to a measure μ.

Mercer’s theorem ensures that the eigenfunctions are
orthonormal with respect to μ, that is, we have

 Consider a Hilbert space of
linear combinations of the eigenfunctions, that is,

T h e n
the inner product (θ1, θ2)  between θ1 =

 is of the
form

(4.7)

This induces the norm 
A smoothness condition on the space is immediately
imposed by requiring the norm to be finite – the
eigenvalues must decay sufficiently fast.

The Hilbert space defined above is a unique RKHS
with respect to κ, in that it satisfies the following
reproducing property:

(4.8)
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Further, the kernel satisfies the following :

(4.9)

Now, with reference to (4.6), observe that the square
norm  and the quadratic form
θTκθ have the same form if the latter is expressed in
terms of the eigenvectors of κ, albeit the latter has n
terms, while the square norm has N terms.

4.4. Regularization
The ill-posed-ness of inverse problems can be

understood from the fact that for any given data set yn,
all functions that pass through the data set minimize any
given measure of discrepancy between the data

 To combat this, one considers minimization
of the following regularized functional:

(4.10)

where the second term, which is the regularizer, controls
smoothness of the function and τ is the appropriate
Lagrange multiplier.

The well-known representer theorem (see, for
example, Kimeldorf andWahba [20], O’Sullivan et al.
[28], Wahba [38], Sch”lkopf and Smola [32]) guarantees
that each minimizer θ ∈  can be represented as

 where κ is the corresponding
reproducing kernel. If is convex, then there is

a unique minimizer .

4.5. Gaussian process modeling of the unknown
function θθθθθ

For simplicity, let us consider the model
yi = θ(χi) + εi (4.11)

for  where we
assume σ  to be known for simplicity of illustration. Let
θ(χ) be modeled by a Gaussian process with mean
function μ(χ) and covariance kernel κ associated with
the RKHS. In other words, for any χ ∈ χ,

and for any 

Assuming for convenience that μ(χ) = 0 for all
χ ∈χ, it follows that the posterior distribution of θ(χ∗)
for any χ∗ ∈χ is given by

where ci is the i-th element of 
In other words, the posterior mean of the Gaussian process based model is consistent with the representer theorem.

5. Regularization using differential operators and connection with Gaussian process

(4.12)

(4.13)

(4.14)

(4.15)

Observe that the posterior mean admits the following representation:

(5.1)

(5.2)

For

and

A Statistical Perspective of Inverse and Inverse Regression Problems
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for some M > 0, where the co-efficients bm  ≥ 0. In
particular, we assume for our purpose that b0 > 0. It is

clear that is translation and rotation invariant.
This norm penalizes θ in terms of its derivatives up to
order M.

5.1. Relation to RKHS
It can be shown, using the fact that the complex

exponentials exp(2πisT χ) are eigen functions of the
differential operator, that

(5.3)

where (s) is the Fourier transform of θ(s). Comparison
of (5.3) with (4.7) yields the power spectrum of the form

 which yields the following

kernel by Fourier inversion:

(5.4)
Calculus of variations can also be used to minimize

R(θ) with respect to θ, which yields (using the Euler-
Lagrange equation)

(5.5)

with

(5.6)

where G is known as the Green’s function. Using Fourier
transform on (5.6) it can be shown that the Green’s
function is nothing but the kernel K given by (5.4).
Moreover, it follows from (5.6) that

  are inverses of each other.
Examples of kernels derived from differential

operators are as follows. For d = 1, setting b0 = b2, b1 =
1 and bm = 0 for m ≥ 2, one obtains κ(χ, χ′) = κ(χ – χ′)

= , which is the covariance of the

Ornstein-Uhlenbeck process. For general d dimension,
setting bm = b2m / (m!2m), yields κ(χ, χ′) = κ(χ – χ′)  =

Considering a grid xn, note that

(5.7)

where Dm is a suitable finite-difference approximation
of the differential operator. Note that such finite-
difference approximation has been explored in section
3, which we now investigate in a rigorous setting. Also,
since (5.7) is quadratic in θ, assuming a prior for θ, the
logarithm of which has this form, and further assuming
that log is a log-likelihood quadratic in θ, a
Gaussian posterior results.
5.2. Spline models and connection with Gaussian
process

Let us consider the penalty function to be 
Then polynomials up to degree m – 1 are not penalized
and so, are in the null space of the regularization operator.
In this case, it can be shown that a minimizer of R(θ) is
of the form

(5.8)

where  are polynomials that span the null
space and the Green’s function G is given by (see Duchon
[15], Meinguet [23])

(5.9)otherwise

where cm.D are constants (see Wahba [38] for the explicit
form).

We now specialize the above arguments to the spline
set-up. As before, let us consider the model

For simplicity, we consider the one-dimensional set-up,
and consider the cubic spline smoothing problem that
minimizes

(5.10)
where 0 < χ1 < ..... < χn < 1. The solution to this
minimization problem is given by

(5.10)
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where, for any χ, (χ) + = χ if χ > 0 and zero otherwise.
Following Wahba [37], let us consider

(5.12)

where   and θ is a zero mean Gaussian process with covariance

 (5.13)

where v = min {χ, χ′}.

Taking  makes the prior of β vague, so that penalty on the polynomial terms in the null space is effectively

washed out. It follows that

 (5.14)

where, for any χ, h(χ) = (1, χ)T , H = (h(χ1), ...., h(χn)),  is the covariance matrix corresponding to

2

Since the elements of s(χ*) are piecewise cubic polynomials, it is easy to see that the posterior mean (5.14) is
also a piecewise cubic polynomial. It is also clear that (5.14) is a first order polynomial on [0, χ1] and [χn, 1].

5.2.1. Connection with the -fold integrated Wiener process
Shepp [33] considered the -fold integrated Wiener process, for  = 0, 1, 2, .... , as follows:

(5.15)

where Z is a Gaussian white noise process with covariance δ(u – u′). As a special case, note that W0 is the
standard Wiener process. In our case, note that

(5.16)

The above ideas can be easily extended to the case of the regularizer  for m ≥ 1 by replacing

(χ – u)+ with / (m – 1) ! and letting h(χ) = (1, χ, ....,  χm–1)T

6. The Bayesian approach to inverse problems in Hilbert spaces
We assume the following model

(6.1)
where y, θ  and ε are in Banach or Hilbert spaces.

6.1. Bayes theorem for general inverse problems
We will consider the model stated by equation (6.1). Let y and Θ denote the sample spaces for y and θ, respectively.

Let us first assume that both are separable Banach spaces. Assume μ0 to be the prior measure for θ. Assuming well-
defined joint distribution for (y, θ), let us denote the posterior of θ given y as μy. Let ε ~ Q0 where Q0 such that ε and
θ  are independent. Let Q0 be the distribution of ε. Let us denote the conditional distribution of y given θ by Qθ,
obtained from a translation of Q0 by G(θ).

Assume that 

Thus, for fixed  is measurable and Note that – Φ (. , y) is nothing
but the log-likelihood.

Let v0 denote the product measure

(6.2)
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 (6.3)
and let us assume that Φ is v0-measurable. Then (θ, y) ∈ Θ × Y is distributed according to the measure v(dθ, dy)

= μ0(dθ)Qθ(dy). It then also follows that  v << v0, with

(6.4)

Then we have the following statement of Bayes’ theorem for general inverse problems:
Theorem 3 (Bayes theorem for general inverse problems). Assume that  :    is v0-measurable

and

(6.5)

for Q0-almost surely all y. Then the posterior of θ given y, which we denote by μy, exists under v. Also, μy << μ0 and
for all y v0-almost surely,

(6.6)

Now assume that Θ and Y are Hilbert spaces. Suppose ε ~ N(0, Γ). Then the following theorem holds:
Theorem 4 (Vollmer [36]).

(6.7)

where  is the norm induced by 

For the model  the posterior is of the form

(6.8)

6.2. Connection with regularization methods
It is not immediately clear if the Bayesian approach

in the Hilbert space setting has connection with the
deterministic regularization methods, but Vollmer [36]
prove consistency of the posterior assuming certain
stability results which are used to prove convergence of
regularization methods; see Engl et al. [16].

We next turn to inverse regression.

7. Inverse regression
We first provide some examples of inverse

regression, mostly based on Avenhaus et al. [4].

7.1. Examples of inverse regression
7.1.1. Example 1: Measurement of nuclear materials

Measurement of the amount of nuclear materials such
as plutonium by direct chemical means is an extremely
difficult exercise. This motivates model-based methods.
For instance, there are physical laws relating heat
production or the number of neutrons emitted (the
dependent response variable y) to the amount of material
present, the latter being the independent variable x. But
any measurement instrument based on the physical laws
first needs to be calibrated. In other words, the unknown
parameters of the model needs to be learned, using
known inputs and outputs. However, the independent
variables are usually subject to measurement errors,

motivating a statistical model. Thus, conditionally on x
and parameter(s) ,
denotes some appropriate probability model. Given yn

and xn, and some specific , the corresponding  needs
to be predicted.
7.1.2. Example 2: Estimation of family incomes

Suppose that it is of interest to estimate the family
incomes in a certain city through public opinion poll.
Most of the population, however, will be unwilling to
provide reliable answers to the questionnaires. One way
to extract relatively reliable figures is to consider some
dependent variable, say, housing expenses (y), which is
supposed to strongly depend on family income (χ); see
Muth [26], and such that the population is less reluctant
to divulge the correct figures related to y. From past
survey data on χn and yn, and using current data from
families who may provide reliable answers related to
both χ and y, a statistical model may be built, using which
the unknown family incomes may be predicted, given
their household incomes.
7.1.3. Example 3: Missing variables

In regression problems where some of the covariate
values χi are missing, they may be estimated from the
remaining data and the model. In this context, Press and
Scott [29] considered a simple linear regression problem
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in a Bayesian framework. Under  special assumptions
about the error and prior distributions, they showed that
an optimal procedure for estimating the linear parameters
is to first estimate the missing χi from an inverse
regression based only on the complete data pairs.

7.1.4. Example 4: Bioassay
It is usual to investigate the effects of substances (y)

given in several dosages on organisms (χ) using bioassay
methods. In this context it may be of interest to determine
the dosage necessary to obtain some interesting effect,
making inverse regression relevant (see, for example,
Rasch et al. [30]).
7.1.5. Example 5: Learning the Milky Way

The modelling of the Milky Way galaxy is an integral
step in the study of galactic dynamics; this is because
knowledge of model parameters that define the Milky
Way directly influences our understanding of the
evolution of our galaxy. Since the nature of the Galaxy’s
phase space, in the neighbourhood of the Sun, is affected
by distinct Milky Way features, measurements of phase
space coordinates of individual stars that live in this
neighbourhood of the Sun, will bear information about
the influence of such features. Then, inversion of such
measurements can help us learn the parameters that
describe such MilkyWay features. In this regard, learning
about the location of the Sun with respect to the center
of the galaxy, given the two-component velocities of the
stars in the vicinity of the Sun, is an important problem.
For k such stars, Chakrabarty et al. [13] model the k×2-
dimensional velocity matrix V as a function of the
galactocentric location (S) of the Sun, denoted by
V = ξ(S). For a given observed value V*  of V, it is then
of interest to obtain the corresponding S*. Since ξ is
unknown, Chakrabarty et al. [13] model ξ as a matrix-
variate Gaussian process, and consider the Bayesian
approach to learning about S, given data {(Si,Vi) : i = 1,
..., n} simulated from established astrophysical models,
and the observed velocity matrix V*.

We now provide a brief overview of of the methods
of inverse linear regression, which is the most popular
among inverse regression problems. Our discussion is
generally based on Hoadley [19] and Avenhaus et al.
[4].

7.2. Inverse linear regression
Let us consider the following simple linear regression

model: for i = 1, ..., n,
yi =  σ + βχi + σ∈i, (7.1)

where 
For simplicity, let us consider a single unknown ,

associated with a further set of m responses
 related by

(7.2)

for i = 1, ...., m, where  and are independent
of the εi’s associated with (7.1).

The interest in the above problem is inference
regarding the unknown χ. Based on (7.1), first least
squares estimates of α and β are obtained as

(7.3)

(7.4)

where  Then,
letting  ‘classical’ estimator of χ is
given by

(7.5)

which is also the maximum likelihood estimator for the
likelihood associated with (7.1) and (7.2), assuming
known σ and τ. However,

(7.6)

which prompted Krutchkoff [22] to propose the
following ‘inverse’ estimator:

(7.7)

where,

(7.8)

(7.9)
are the least squares estimators of the slope and intercept
when the χi are regressed on the yi. It can be shown that
the mean square error of this inverse estimator is finite.
However, Williams [39] showed that if σ2 = τ2 and if the
sign of β is known, then the unique unbiased estimator
of x has infinite variance. Williams advocated the use of
confidence limits instead of point estimators.

Hoadley [19] derive confidence limits setting σ = τ
and assuming without loss of generality that

 Under these assumptions, the maximum
likelihood estimators of σ2 with xn and yn only,

only, and with the entire available
data set are, respectively,

(7.10)

(7.11)

(7.12)
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Now consider the F-statistic   for testing the hypothesis β = 0. Note that under the null hypothesis this
statistic has the F distribution with 1 and n + m degrees of freedom. For m = 1,

has a t distribution with n – 2 degrees of freedom. Letting  Fα,1,v denote the upper α point of the F distribution with
1 and v degrees of freedom, a confidence set S can be derived as follows:

(7.13)

where χL and χU are given by

Hence, if  then the associated confidence interval is S = (–∞, ∞), which is of course
useless.

Hoadley [19] present a Bayesian analysis of this problem, presented below in the form of the following two
theorems.

Theorem 5 (Hoadley [19]). Assume that σ = τ, and let χ be independent of (α, β, σ2) a priori. With any prior
π(χ) on χ and the prior

on (α, β, σ2), the posterior density of x given by

where,

where,

For m = 1, Hoadley [19] present the following result
characterizing the inverse estimator 

Theorem 6 (Hoadley [19]). Consider the following
informative prior on χ:

where tv denotes the t distribution with v degrees of
freedom. Then the posterior distribution of χ given yn,
χn and  has the same distribution as

In particular, it follows from Theorem 6 that the
posterior mean of x is  when m = 1. In other words,
the inverse estimator  is Bayes with respect to the
squared error loss and a particular informative prior
distribution for χ.

Since the goal of Hoadley [19] was to provide a
theoretical justification of the inverse estimator, he had
to choose a somewhat unusual prior so that it leads to 
as the posterior mean. In general it is not necessary to
confine ourselves to any specific prior for Bayesian
analysis of inverse regression. It is also clear that the
Bayesian framework is appropriate for any inverse
regression problem, not just linear inverse regression;
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indeed, the palaeoclimate reconstruction problem
(Haslett et al. [18]) and the MilkyWay problem
(Chakrabarty et al. [13]) are examples of very highly
non-linear inverse regression problems.

7.3. Connection between inverse regression problems
and traditional inverse problems

Note that the class of inverse regression problems
includes the class of traditional inverse problems. The
Milky Way problem is an example where learning the
unknown, matrix-variate function ξ (inverse problem)
was required, even though learning about S, the
galactocentric location of the sun (inverse regression
problem) was the primary goal. The Bayesian approach
allowed learning both S and ξ simultaneously and
coherently.

In the palaeoclimate models proposed in Haslett
et al. [18], Bhattacharya [7] and Mukhopadhyay and
Bhattacharya [25], although species assemblages are
modeled conditionally on climate variables, the
functional relationship between species and climate are
not even approximately known. In all these works, it is
of interest to learn about the functional relationship as
well as to predict the unobserved climate values, the latter
being the main aim. Again, the Bayesian approach
facilitated appropriate learning of both the unknown
quantities.

7.4. Consistency of inverse regression problems
In the above linear inverse regression, notice that if

τ > 0, then the variance of the estimator of χ can not
tend to zero, even as the data size tends to infinity. This

shows that no estimator of χ can be consistent. The same
argument applies even to Bayesian approaches; for any
sensible prior on χ that does not give point mass to the
true value of χ, the posterior of χ will not converge to
the point mass at the true value of χ as the data size
increases indefinitely. The arguments remain valid for
any inverse regression problem where the response
variable y probabilistically depends upon the
independent variable χ. Not only in inverse regression
problems, even in forward regression problems where
the interest is in prediction of y given x, any estimate of
y or any posterior predictive distribution y will be
inconsistent.

To give an example of inconsistency in non-linear
and non-normal inverse problem, consider the following

set-up:  ‘Poisson , for i = 1, ....., n, where
θ > 0 and χi > 0 for each i. Let us consider the prior
π(θ) ≡ 1 for all θ > 0. For some i* ∈{1, ..., n} let us
assume the leave-one-out cross-validation set-up in that
we wish to learn χ = χi* assuming it is unknown, from
the rest of the data. Putting the prior π(χ) ≡ 1 for χ > 0,
the posterior of χ is given by (see Bhattacharya and
Haslett [9], Bhattacharya [8])

(7.14)
Figure 7.1 displays the posterior of χ when i = 10,

for increasing sample size. Observe that the variance of
the posterior does not decrease even with sample size as
large as 100; 000, clearly demonstrating inconsistency.
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Hence, special, innovative priors are necessary for
consistency in such cases.

8. Conclusion
In this review article, we have clarified the similarities

and dissimilarities between the traditional inverse
problems and the inverse regression problems. In
particular, we have argued that only the latter class of
problems qualify as authentic inverse problems in they
have significantly different goals compared to the
corresponding forward problems. Moreover, they include
the traditional inverse problems on learning unknown

Figure 7.1: Demonstration of posterior inconsistency
in inverse regression problems. The vertical line denotes
the true value. functions as a special case, as exemplified
by our palaeoclimate and Milky Way examples. We
advocate the Bayesian paradigm for both classes of
problems, not only because of its inherent flexibility,
coherency and posterior uncertainty quantification, but
also because the prior acts as a natural penalty which is
very important to regularize the so-called ill-posed
inverse problems. The well-known Tikhonov regularizer
is just a special case from this perspective.

It is important to remark that the literature on inverse
function learning problems and inverse regression
problems is still very young and a lot of research is
necessary to develop the fields. Specifically, there is
hardly any well-developed, consistent model adequacy
test or model comparison methodology in either of the
two fields, although Mohammad-Djafari [24] deal with
some specific inverse problems in this context, and
Bhattacharya [8] propose a test for model adequacy in
the case of inverse regression problems. Moreover, as
we have demonstrated, inverse regression problems are
inconsistent in general. The general development in these
respects will be provided in the PhD thesis of the first
author.
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