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ABSTRACT

The power divergence family (PD; Cressie and Read, 1984) and the density power divergence family (DPD; Basu et al.,
1998) are two of the most important constituents of the literature on the density-based minimum distance inference. The
power divergence family is, arguably, the most prominent member of the class of -divergence family (Csiszar, 1963). Patra
et al. (2013) demonstrated that a mathematical link exists between the PD and the DPD families. In this paper we have
demonstrated that such links exist more generally between other variants of the DPD family and the generalized-divergences
called the (h, ¢) divergences (Pardo, 2006). In particular we look at the logarithmic power divergence (LPD) family, which
may be obtained from a direct translation of the logarithmic density power divergence family (Jones et al., 2001) and explore
itsrolein statistical inference. Several properties of the LPD family, including the asymptotic properties of the corresponding
estimators and application of the divergence in performing tests of hypotheses are explored; the breakdown properties of the
estimator and the corresponding disparity test statistic are discussed. The LPD is a version of a divergence considered by
Renyi (1961) and we demonstrate that tests of parametric hypothesis or tests of goodness-of-fit based on the LPD family
show competitive behavior compared to those based on the original PD family. The theory developed is substantiated with
numerical studies involving simulated data.

1. Introduction and demongtrated that either family of these divergences

Minimum distance methods provide a natural ~ €an be obtained from the other by simply altering the
techniquefor parametric statistical inference. Amongthe  degree of the density power downweighting. Their
dierent types of theminimum distancemethodsavailable ~ findings also indicate that the DPD family isthe unique
in the literature, the density-based minimum distance ~ family within a large class of the divergences which
techniques have made adierence because many members ~ allowsthe estimation of the parametersin the continuous
of this class possess full or very high asymptotic ~ case without any nonparametric density estimation,
efficiency with strong robustness properties. Several  strengthening the already solid credentials of the DPD
authors, including Beran (1977), Tamura and Boos  family in the parametric inference.

(1986), Simpson (1987), Lindsay (1994), Pardo (2006) In this paper we have considered other related
and Basu et al. (2011) have contributed significantly o gjvergences and explored some other instances of the
this area of research. connection between families of the density-based

Cressie and Read (1984) proposed a generalized  divergencesthose originate from the alteration of degree
class of the density-based divergencesand thisfamily is  of the density power downweighting. In particular, we
known as the power divergence (PD) family. Although  will consider the logarithmic power divergence (LPD),
the primary intent of Cressie and Read in introducing  which is a member of the (h, ¢) divergences (Pardo,
thisfamily was testing multinomial goodness-of-fit, the  2006) and is a version of the Renyi divergence (Renyi,
family of the power divergences have been extensively  1961). The divergence was used by Pardo and his
used in the robust minimum distance estimation. The  gggpciates for testi ng multinomial goodness-of-fit tests
power divergence'fami ly is a subclass of the family of (see Pardo, 2006). We are not aware of the application
¢-divergences (Csiszar, 1963). of thisdivergencein case of parametric hypothesistesting

Basu et al. (1998) introduced thefamily of thedensity ~ and we demonstrate here that the hypothesis testing
power divergence (DPD). The divergences within this  resultsbased onthelogarithmic power divergencefamily
family also show attractive robustness properties.  aresimilar and competitiveto those based on the ordinary
Although the estimators within this class do not have  power divergence family. It also lends itself to the
full asymptotic efficiency, severa memberswithin this  jmprovements that result from the applications of inlier
classgenerate highly robust estimatorswith only nominal correction techniques (Mandal and Basu, 2013).

:COSS. :!" asymé)totlc efflcr::?cyt;;g;h the PD andf tdhe DtPD Therest of the paper isorganized asfollows. Section
amifiestisedownwerghtingbased on POWErSOT denSItIES 5 Gescribes the PD and the DPD families and describes

in their robustness scheme. the connection between them. Section 3 describes other

Recently, Patra et al. (2013) examined the  yariants of these divergences and explores similar
mathematical structure of the PD and the DPD families  connections between them. The logarithmic power
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divergence family, which stands out in this exercise, is
then chosen to explore its role in statistical inference.
Section 4 discusses the penalized LPD to illustrate the
role of inlier modication techniques whereas numerical
results invoving simulation are provided in Section 5.
Concluding remarks are presented in Section 6.

2. Background: The PD and the DPD Families
2.1 The Power Divergence Family

Let G represent the class of al distributions having
densities of the appropriate measure. The power
divergence (PD) family of Cressie and Read (1984)
definesadensity-based divergence between two densities
g and f, as afunction of asingle real tuning parameter

AeR,as

PDi(g, f) = m/g K—;)A - 1] €

The divergences corresponding to A = 0 and

= —1 cannot be directly obtained from Equation (1)

and they haveto be obtained using the continuouslimits

of the functiona form in Equation (1) as A — 0 and
A — —1, respectively. These divergences are given by

. . . ' !
PDo(g, f) = lim PDA(g. f) = / glog (?’)

2
PD-i(g, f) = lim PDx(g, f) = /f log (fj)
(©)

The class of divergences defined by Equation (1)
represents arich class of the density-based divergences
and includes several well-known divergences such as
the Pearson’s Chi-Square (PCS), thelikelihood disparity
(LD), the Hellinger distance (HD), the Kullback-Liebler
divergence (KL D) and the Neyman's Chi-Square (NCS)
as specia cases, corresponding to A =1, 0; -1/2; -1
and — 2, respectively. For the purpose of parametric
estimation onereplacesthe density f in Equation (1) with
fg, @ member of a parametric family of densities

_F(;) ={f i0eo C_i IR? } and finds the minimum
distance estimator of 8 as afunction of the distribution
G by minimizing PD,(g; fy) over 6 €© , where g
represents the density function corresponding to the
distribution G. Inactua practice, given arandom sample

) ST » X,, from the true data generating distribution
G, one constructs a nonparametric density

estimate g of g and minimizes PD, (g ; f,) over 6€©
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to find the minimum divergence estimator of 6.

In particular when the data are generated from a
discrete model, the vector of the relative frequencies

represent the canonical choice for g. Without loss of
generality let the support of the random variable bey =

{0; 1, ...... }. Letd,(x) be the relative frequency of the
value y based on the sample. Then the minimum power

divergence estimator § may be dened by therelation §
=arg ming .o PD,(d,,; fg), where

. 1 > du(‘r) g
P ) = 5y ) | (F57)

=0

It can be easily seen that the estimator § isafunction
of A also, which we have suppressed for brevity.

2.2 The Density Power Divergence (DPD) Family

The minimum distance inference method described
inthe previous section for the discrete modelscan easily
be extended to the continuous models also. However,
for continuous models one has to use some
nonparametric smoothing technique such as kernel
density estimation to construct an estimate of the true
density (see, e.g., Basu et al., 2011). The estimation
method based on minimizing the PD family inherits all
the associated complications of kernel density estimation
including and the d ower rate of convergence of thekernel
density estimatein higher dimensions. To overcomethis
issue, Basu et al. (1998) proposed the density power
divergence (DPD) which successfully estimatesthetrue
density without using any kernel density technique.
Given densities g and f for distributions G and F
respectively, the density power divergenceisdefinedin

terms of a nonnegative tuning parameter ¢, > (), as

DPD. (g, f) = / [,f”” - (1 + l) g+ l.f;”"]
. fal Qa

4)

Thisdivergenceisnot directly defined for a¢=0and

needsto be obtained asthe continuouslimit of the above
functional form as o — 0. This generates

DPDy(g. f) = lim DPD,(g. f) = / glog (2)
a0 . f

5

which, incidentaly, is identical to the divergence PD,

(g; f) given in Equation (2). Thisisthe only divergence

which is common to both the PD and the DPD families.



Patra et al. (2013) pointed out an interesting
connection between these two families. We can express
the power divergence between two densitiesg and f as

(e 1 a\'""* (g 1L—g/f |,
PD,(g, /) ./{—Au - [(T) - (T)] T },f.

(6)
This is just a rewriting of Equation (1) and does not
change the integral. In addition, the form given in
Equation (6) makes the integrand (and not just the
integral) non-negative. Suppose we wish to modify this
divergence so that the modified form preserves the
divergence properties and the corresponding minimum
divergence estimator avoids nonparametric density
estimation. To do this we need to eliminate the terms
that contain a product of a nonlinear function of g with
some function of f and for this we only need to adjust
theterm (g/f)1** in Equation (6). Asthe expression within
the curly braces is nonnegative and equals zero only if
g = f, we can replace the outer f term in Equation (6) by
f1* and still get avalid divergence that simpliesto

/ (9" = gf*] N [ —gf
TSN T+ A
= Jlr/\ /{% (9" —gf* + 1 = g,f*}

1 14+ A 1 A 1 I+ A
. — (14 = =
3 /\‘/{J ( +/\)yf +19

()
which is a scaled version of the divergence given in
Equation (4) for A = o. Interestingly, the above operation
generates strongly robust divergences starting from
divergences that are highly non-robust and vice versa.
For example, starting from the Pearson’s chi-square
divergence we derive the L,-distance which is highly
robust.

We can also reverse the above transformation to get
the power divergence family from the density power
divergence family by replacing the outer f1*® term in

* 140
DPD,.(g, f) = / { ] — ([ + l) 2 4 l (E) }f1+n
. al f al\f

(8)
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with f. After smplication, the divergence is easily seen
to be equal to ascaled version of the PD , family.

Patraet al. (2013) actually considered amore general
class of divergences given by

plg, f) = / n(6 +1)fPda ©
. &
where 3 > 1, 8 isthe Pearson residual / and n(y) =

1
z;aty for some finite set T with elementsin R and
fe

real coefficients {a} such that n(.) is nonnegative on
[0, o) and 1(y) = 0 only wheny = 1. They found that the
restrictionsnecessary for p(g, f) to beagenuine statistical
divergence as well as those necessary for avoiding
nonparametric smoothing for the purpose of the
estimation for continuous models; the authors
demonstrated that this leads to the DPD family with
parameter 3 — 1 as the unique solution.

2.3 (h, ¢)-Divergence Family
Csiszér (1963) and Ali and Silvey (1966) provided a

general class of divergences between two densities.
Given densities g and f, this classis defined by

Dals, 1) = [ 0 (%) J; (10)

where ¢(.) is aconvex function such that ¢(1) = 0. The
class of the power divergence family is a subclass of
o-divergences. Menéndez et al. (1995) described the
(h, ¢)-divergence between two densitiesg and f as

D%(g, f) = h(Dy(g, f)), (12)

where hiisareal, increasing, differentiable function on
the range of the ¢ divergence. Pardo (2006) provides an
useful list of specic ¢ and (h, ¢) divergences.

3 The Logarithmic Power Divergence and the
L ogarithmic Density Power Divergence Families

Jones et al. (2001) considered several variants of the
DPD family, which allow for other forms of the density
power downweighting without requiring any
nonparametric smoothing. A classof divergencesof this
typeisthelogarithmic density power divergence (LDPD)
family given by

1 1
LDPD(g, f) = log / fre - (1 + —) log / feg+ ~log / 97w
. «v . «v .
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where LDPD stands for the logarithmic density power
divergence. Thisform has striking similarities with the
DPD family, and may be considered to be amodication
of the latter where the identity function is replaced by
the logarithmic function. In the spirit of the connection

LDPD(yg, f) =

between the PD and the DPD described in Equation (7),
the LDPD family is also seen to be similarly connected
in the same manner to an (h, ¢) divergence; theh and ¢
functions are defined later in Section 3.2. In particular
the LDPD family can be written as

1 _
log / fire— (1 + ;) log / (%) firre 3

1 g e 1+
- Qlog'/(’f) fre.

Replacing each f1*® term with f in Equation (13) leads
to the divergence

1 gt
We standardize this further to express this divergence
1 g1+ot
as m log f f—“ In this form the divergence

generates the divergences | g log (‘j} and | flog

[é] as a.— Oand o — —1, respectively; theselimiting
divergences are the same as the corresponding limiting
divergencesin case of the PD family, asgivenin Equation
(2). The family of divergencesin Equation (14) will be
called the logarithmic power divergences (LPD); using
a different symbol for the tuning parameter, this
divergence has the form

1 " 143

LPDg(g, f) = - log ?

—_— 5 € R.
B(B+1) b e

(15)

3.1 TheLPD asadivergence

The LPD has known forms for § =0 or —1 (in the
limiting sense). For other values of B we have the
following theorem.

Theorem 1. The LPD is a divergence for
ﬂe R \{Ol _1}

RASHI 2 (1) : (2017)

Proof. Note that,

1 ¢ 1+

LPDs(g. f) = mlog .f,-a

! . g'th
= m l()}l, |:Ef (f|+_:'i)}

Now let us consider the function k(x) = x*B, where
%> 0. Then, K(x) = (1+B) xPand k”(x) = B (1+B)xP-2.
Sowhen B >0o0r B <-1,i.e, B(1+P) > 0, K’(x) > 0,
implying k(y) is strictly convex, and when -1 < 3 < 0,
i.e, B (1+PB)<0,k(y) is strictly concave. Therefore,
when 3(1 + B) > 0, using Jensen’s inequality we get,

1+8 1+8
log [Ef (j‘:‘)} > log {Ef (%‘)} ] = 0.

Ontheother hand when B(1 + ) < 0, Jensen’sinequality

gives
143 143
(Y (9
o8 {L’f (f] )] = los {bf (7)} } -

In either of the above two cases, theinequality becomes
anequality if and only if g= f, identically. Therefore, in
either case we have,

1 gtth

LPDg(g, f) = m log

20

with equality if and only if g = f. This completes our
proof.



3.2TheLPD asa (h, ¢)-divergence
Pardo (2006) described the (h, ¢)-divergence as

Dy(g. f)=h (/ v (f) f)

where h and ¢ havethe usual properties. It can be easily

shown that the PD family isamember of the ¢-divergence

family (for details see Basu et al., 2011). Now, the LPD
g

family can be written as
(1)

log [3(1 + 3)PDg(g, f) + 1]

g (16)

145

LPDs(g, f)

|
B(1+ )

1
B(1+53)
Now if we denote PDB(g, f) asy, then LPDﬂ(g, f) can
be denoted as (), where
~log(B(1+B)y+1)

B B(1+ p) '
Itiseasy to check that Y¥(y) isan increasing function of

y. Thus the LPD defines a genuine (h, ¢) divergencein
the sense of Equation (16).

U(y)

3.3TheMinimum LPD estimator and its Estimating
Equation

The minimum LPD estimator g of 6 at adensity g is
defined by the relation

0 = arg I(}\]glél LPDs(g, fo)-

The estimating equation of the minimum LPD estimator
a adensity gisgiven by

- VLPDB(g, fg) =0,
where V represents derivative with respect to 6. The
estimating equation has the form

1 gl-i-;'f -1 g"i‘;’f .

BL+5) (/ f—;) v (/ 7 ) =0
1 gith -

émv (/ f: ) = 0.

17
Following the same terminology we can write the PD
family as

| 1 g 1+
PDgs(g, fo) = B(1+ ) (/ }f"s B 1) 4o
_ _ Jo T
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The corresponding estimating equation will be
- VPDB(g, fg) =0,

):0.

It isclear that Equations (17) and (19) are identical
equations. Thisimpliesthat though the PD and the LPD
families have different functional forms, they have
identical estimating equations which implies both the
minimum LPD and the minimum PD estimators are the
same. Thisis expected, since the LPD is an increasing
function of the PD.

which gives
1+3

N (/ v

B(1+ )

(19)

3.4 Asymptotic Distribution of the minimum LPD
estimator

As shown in the Section 3.3, the minimum PD
estimator and the minimum L PD estimatorsarethe same;
consequently they will have the same asymptotic
distribution. Under some regularity conditions, there
exists a consistent sequence 6,, of roots to the minimum
L PD estimating equation and the asymptotic distribution
of nV/ 2(0n - 09) ismultivariate normal with mean vector
0 and covariance matrix J;VgJ; where 9isthe best
fitting parameter as defined in Section 2.3, Basu et al.
(2011), and J, and Vg areasdefinedinBasu et al. (2011,
Theorem 2.1%).

3.5 The Minimum LPD Estimator : The Discrete
M odel

Let X4, Xo, X, be nindependently and identically
distributed observations from a discrete population G,
modeled by the parametric family

Fo={fg: 60 c RP}. Without loss of generality, we
can assume that the support of the distribution Gisy =
{0,1,2,.....}. Letd(x) betherelative frequency of the
value y in the random sample. Then the minimum LPD

estimator ¢ of @ is defined by the relation
0 = arg 1{}&1}1 LPDgs(d,, fo).

3.6 Using the LPD in Testing of Hypothesis
Using adiscrete model and the parametric set up of
Section 2.1, consider the null hypothesis
Hy: 0€0 (20)
where © is a proper subset of the parameter space ©.

Let r bethe number of independent restrictionsimposed
by the null hypothesis. The deviance test statistic based



onthe LPD is defined by

‘D]‘p[jj.i = 2?’.’.(LPD_.-‘-;((fn, fé“) - LPDJ--}(U?”_, fg})
(21)

where 6, and ¢ are the estimates of under the null

hypothesis and without any restrictions respectively.
Although the minimum PD and LPD estimators are
identical, the same does not hold for the deviance statistic

1

LPDg(d,, fo) = B0+ 5) log

1
= = log[B(1+5

B(1+ B)

The PD deviance statistic is defined by

DPDII..i(d.n; fﬂ) = QTE(PDﬁ(dT“ fé()) _

which can be written as 2n (ygﬂ) yi

) , where 1;1

based on the PD and the LPD. We will now find the
asymptotic null distribution of the test statistic givenin
Equation (21). Though the PD and the LPD deviance
statistics are not themselves identical, they are
asymptotically equivalent and we will derive the
asymptotic null distribution of the deviancetest statistic
based on the L PD by demonstrating the same. Theresult
corresponding to the PD isderived, for example, in Basu
et al. (2011). The LPD can be written as

d}fﬁ
1y

)PDg(dn, fo) +1].

PDJ(dn fé)] (22)

= PDgs(dy, f4,) and

yén) = PDg(d,, f;), and the corresponding statistic in Equation (21) will

be of the form 2n ('t_,-:"} (yrl)) — 1 ( W ))) . where 9 (y) = W Now,
using Taylor’s expansion, we get,
| (n) . (n) (n) (n) n) 1 (n) (n) 2 I
(3 (?}1 ) -V (3/2 ) = (?;"1 — Y2 ) ('JQ ) B (Jl — Y2 ) V" (§),
for some ¢ between y\™ and y{”. Now ¢/(y) = m and ¢"(y) =
% Under the null hypothesis, as n — oo, ¥ ( ;(”)) —'(0) =1

and for any fixed /3, ¥"(y) is a bounded finite term since y > 0. Thus

2n (1,-9 (yin)) —Y (Jz )) N

2n (yin)

+n X (yl(”) - yé?l)) X Q.

— o) ' (")

(23)

where a,, = (t,!%n) :ué”}) x "(€). It follows from Basu et al. (2011) that

2n (Jl — yé"')) £> W ~ X-:2~'
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n n 'H - - . .
Hence n (1'] =5 ’)= 0,(1), and thus (v]“” —yg’”)—m. Replacing these results in Equation (23) gives us

2n (v (y)"

Hence

Dipp, (dn. fo) 5 W ~ X2,

Thus the null distribution of the deviance statistic
based on the LPD follows the limiting 2 distribution.

3.6.1 Testing of hypothesis using the Rao and Wald
Satistics

Thetest statisticin Equation (21) may be considered
to be the analogue of the likelihood ratio test. One can
also perform tests of hypothesis for the null hypothesis
in Equation (20) using the Rao and the Wald statistics
based on the LPD. TheWald statistic (Wald, 1943) for
the null hypothesisin Equation (20) has the form

v=r 66, 16)6-5.)

which has the same asymptotic null distribution as the
deviance statistic defined in Equation (21). Here g and

(27)

éo are the unrestricted minimum LPD estimators of 0,
and the estimator under the null, respectively.

Under the discrete set-up, the Rao test (Rao, 1973)
for the simple null hypothesis can be performed through
the statistic

S = 'H.(}T(O(])f_l (60)0n(60),

=n

(28)

where

9;3(9) = _"”-"]EVCC'((EH.- fl?)

and ¢(d,,, fy) isany divergence within the LPD class.

The Wald statistic involves the divergence only
through the parametric estimate and for that reason both
the PD and the L PD familieswill generatethe sameWald
Statistic. The derivation in Section 3.3 shows that the
Rao statistics for the two cases are asymptotically
equivaent under the null hypothesis.

3.7 Multinomial Goodness-of-Fit Testing using the

LPD

Multinomial goodness-of-fit testing is one of the oldest
classical techniques in statistics and date goes back to
more than a century (Pearson, 1900). Several books

RASHI 2 (1) : (2017)

) — ¥(ys")) = 2n(

g — 4" + 0,(1). (25)

(26)

including Bishop, Fienberg and Holland (1975),
Fienberg (1980), Agresti (1984), Freeman (1987), Read
and Cressie (1988) and morerecently, Pardo (2006) and
Basu et al. (2011) consider different aspects of this
problem. The LPD can be used for the multinomial
goodness-of-fit testing problem aswell. Supposewe have
a k-cell multinomial with probability vector
n=(ny, Ty, ... M,). Based onamultinomial samplewhich
leads to a frequency of n, in thei-th cell, i = 1, ..k

Zn,- =n, we are interested in testing the null
hypothesis

Ho: m=m(6)
for some unknown 0 which is an s-dimensional
parameter (s< k—1) taking valuesin the set ©. Then the

goodness-of-fit statistic based onthe LPD divergenceis
given by

T =2n 1{}1'1(1)1 LPD(p, 7(8)) = 2nLPD(p, 7(6)).
pr

.
where p= (P, Pr ), Pi = 7; being the observed
proportion of the i-th cell, i = 1, ..., kand g is the

minimum LPD estimator of 6 defined by g’é LPD

(pm(@®)) =LPD (,E:a,n (e)) Under H, the LPD test

dtatistic has an asymptotic xf,s,l distribution (Pardo,
2006). When the null fully specifies the probability
vector, the degrees of freedom of the %2 distribution is
(k—=1).

3.8 Breakdown Properties

3.8.1 Breakdown point of the minimum LPD
Estimator

Asdiscussed in the Section 3.3, both the minimum LPD
estimator and the minimum PD estimator are the same
and so we can conclude that both have identical
breakdown properties. See Basu et al. (2011) for a
discussion of the breakdown properties of the minimum
PD estimator.
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3.8.2 Power Breakdown of the L PD based deviance
statistic

We have already observed that while the minimum
PD and minimum LPD estimators are identical, the test
statistics for testing parametric hypothesis based on the
PD and L PD are not o, although they are asymptotically
equivaent under the null. Herewe will briefly study the
power influence function of the LPD based deviance
tests. Consider the hypothesis and the set-up of Section

3.6. We will follow the approach of Simpson (1989) to
determine the power breakdown point of the disparity
difference tests. Consider the functiona

¢(G) = LPD(g, f3,()) — LPD(g; fi(g))

(29)
asafunction of the distribution point G (having density
0), where

fo(g) = arg min LPD(g, f;) and 6(g) = argmin LPD(g, fy).
i

(-1

Let

€(G;t) = inf {t—’. : 1i'n£;t[(1 —€)G+€V] = fqmn} ;
=

where t is a generic functional, G € g, V is a

contaminating distribution and t,;, = }1};2 t(F). From

thefunctional ¢ asdefinedin (29), wewill refer € (G; ¢)
asthe power-breakdown point, sincefor acontamination
proportion below € (G; ¢) the deviance test will be
consistent, so that it will eventually reject a false
hypothesisand so asymptotically therewill be no power
breakdown. For the true distribution G and the
contaminating distribution V, let u = (1- €)g + ev
represent the density of the contaminated distribution
U, where v represent the contaminating density and uis
the density of U, the mixture of the target and the
contamination. To find the power breakdown at G one
needs to analyze the behaviour of the quantity

&(U) = LPD(u, f3, ) — LPD(u, fj,y)- (0)

Following Simpson (1989), we will determine a

lower bound for LPD @,fgo(u)) and an upper bound

for LPD H:fgo(u)J for all possible distributions V € G.

Itisclear that if thelower bound derivedisstrictly greater
than the upper bound then we can conclude that power
breakdown will not occur.

The LPD(g; fg) family hasthe form

X 1 2 nef
LPD(g, fo) = m]ng/ (_r,r“”jjg ‘1) .

Table 1: Bound for Power Breakdown of the LPD

Disparity Tests
Bl o, — 4 8
—-0:25 0.1942 0.4160
—0:50 0.1341 0.3974
—-0:75 0.0066 0.1566

We then obtain the necessary upper and lower bounds as

LPD(u, f5,)) < LPD(u, f4,) <
and

LPD(u, f(j”(“))

v

v
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1 . 14+ 148 =B
B(B+1) log / [(1 —) '}(fj]1(!!) +

1 . 1+5 1483 =B
< 3GT D) log / [(1 —¢) g f,;(_q)]

Fl+3}l



After some routine simplifications based on the
bounds, we see that break-down cannot occur, i.e. ¢(U)
in Equation (30) is greater than zero, for

. —1/(148)7 !
. 148 0= 143 =B
€< I + (/ g 'Jrlf}fq] - / q 'flfjnf.r;})

(31)

Example: Let fg denote the Poisson density with
mean. We want to test the hypothesis
Ho: 6=06yagainst Hy : 6 6,

Table 1 gives the results for the breakdown bound in
Equation (31) for severa combinationsof fand 6, when
6, = 1. Thetruedensity gisthe Poisson density f, . The
results corresponding to § =—1/2 match with the fesults
of Simpson (1989).

4 |nlier Modication

One of the main attractive features of the minimum
divergence procedures such as those based on the PD
and the L PD familiesisthat many memberswithin these
familieshave automatic robustness propertiesunder data
contamination. Lindsay (1994), Basu and Lindsay (1994)
and several later authors have characterized the outliers
probabilistically in this context, rather than
geometrically, although the concepts often coincide.
Formally, given the observed data density vector d, and

the model density f,, let a(x)z .d" (_X.)_l be a
fo ()
standardized residual. An observation x will be caled

d
Now for & = ;r—l we get

143 143
(IT 1 (jn.

7= 2pa!

A T
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an outlier if 6(x) is alarge positive vaue. Clearly the
robust minimum divergence procedures will have to
strongly downweight the large & observations to keep
the impact of these observations under control. On the
other hand, many of the robust minimum divergence
methods (including those within the PD and the LPD
families) provide animproper treatment of inliers, which
are cells that have less data than are predicted by the
model. Many of these divergences put unduly large
weights on the inliers which appear to adversely affect
their small sample efficiencies. To overcome this
problem several inlier modification techniques are
available in the literature. The most commonly used
method in this context is the technique of penalized
disparities (seeHarrisand Basu, 1994; Basu et al., 1996;
Basu and Basu, 1998; Park et al., 2001; Basu et al.,
2002; Pardo and Pardo, 2003; Alin, 2007; Basu et al.,
2010). Herewewill discuss use of the penalized disparity
in controlling inlier problem in the LPDs.

4.1 The Penalized LPD

Following the approach of Basu et al. (1996), we
will establish the form of the penalized version of the
LPD. The LPD hasthe form

i 1 d|+,-"3’
LPDg(d,. f) = ) log Z ’;3,

T

(32)

= Y [{6+1" —+1} - B8] f+1

T

= Y (G (@) f+1

H i

= Y GO+ Y GO f+1

r:6(x)>—1

:o(x)=—1

= ) [GOIF+G=1) > f+1,

r:d(x)>—1

RASHI 2 (1) : (2017)
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where G*(8) = (1 + 8)*P— (1 +5 ) —B5 . Now to  the non-negativity of each of the terms while changing
control the inlier we need to modify the coefficient of f  the coefficient of the second term and that can be done
when §(x) =—1. For deffining theform of the penalized  easily just by apositive constant (k, say). Therefore, the

LPDB(dn, f) we will consider two cases. penalized LPDB(dI’l’ ) is defined as
Casel (B <—1orp>0): Wewould liketo maintain

1
PLPDgx(d,, f) = ———— log GO f+k "+11, (33

for k > 0.

Case 2 (—1 < 3 < 0) : The penalized LPD will take the form

PLPDg 4 (d,, f)=ﬁ10g Y GO f+k D f+1], @

r:d(z)>—1 r:d(z)=—1

for k> B to maintain the non-negativity of each terms.

4.1.1 Estimating Equation
The estimating equation of the penalized LPD would be

1 * (g . [ " —_—
3055 v Y Gor)+k DY V=0 (33)

x:8(x)>—1 r:o(x)=—1

Following Mandal and Basu (2013), the penalized PD has the form

PPDsu(dn f) = ——— | 0 G @)f |+n 3 f @

d(l T d) r:d(x)>—1 r:(x)=—1

which has the following estimating equation

1 * .
YoM > G MDY 37)

z:(z)>—1 r:d(z)=—1

4.2 Goodness-of-Fit using theinlier modified LPD

Comparing (35) and (37), we can say that both Consider the goodness-of -fit testing problem as ak-
cell multinomial for the equi-probable null

equations are identical when | = B(+B) 1
Ho:m= - V;=1(1)k

RASHI 2 (1) : (2017) 48
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Table 2: Comparison of the observed levels of thetesting methods based on thetwo familiesat nominal level

0:05
Method € n PHD HD PLHD LHD
20 0.0474 0.1068 0.0464  0.1104
0 50 0.05 0.0846 0.049 0.088
Deviance 100 0.0518 0.0808 0.0498  0.0842
20 0.054 0.1238 0.0536  0.1326
0.1 50 0.0584 0.093 0.0608  0.1068
100 0.0644 0.0768 0.0696  0.0868
20 0.0272 0.1118 0.0382  0.1426
0 50 0.0414 0.0862 0.047 0.097
Rao 100 0.045 0.0836 0.0472  0.08%4
20 0.0228 0.1114 0.0442  0.1614
0.1 50 0.0396 0.0846 0.059 0.1136
100 0.0482 0.0722 0.065 0.091
Table 3: Comparison of the observed powers of the testing methods based on the two families at nominal
level 0:05
Method € n PHD HD PLHD LHD
20 0.8004 0.908 0.8282  0.9404
0 50 0.9954 0.9984 0.9956  0.9984
Deviance 100 1 1 1 1
20 0.7134 0.8676 0.7644  0.9186
0.1 50 0.9792 0.9926 0.98 0.994
100 0.9998 0.9998 0.9998  0.9998
20 0.7014 0.9142 0.7614  0.9318
0 50 0.9942 0.9984 0.9952 0.999
Rao 100 1 1 1 1
20 0.531 0.8516 0.6592  0.9032
0.1 50 0.9596 0.9896 09734  0.9926
100 0.9996 1 1 1

against the aternative hypothesis

-5 ..
L ifi=1,2,--+ k-1,
H|:'}'_.j: I—|—'{€- : : ’
= ifi =k,

(38)
where —1<y < (k—1) isacongtant.

The goodness-of -fit test statistic has the form
T = 2n 1{}1_1(3)1 PLPDg(dy. fo) = 2nPLPDg . (d,. f;)
The asymptotic distribution corresponding to the
penalized LPD closely follows the approach of Mandal
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and Basu (2013). We omit the proof here, but the
asymptotic null distribution is x2(k — 1).

5 Simulation Example

Inthissectionwewill giveasimulation schemeusing
theLPD and its penalized version with the corresponding
member of the PD family.

5.1 Testing using the Penalized L PD

Asshownintheearlier sections, the estimatorsunder
the minimum PD method and the corresponding
minimum LPD method will be same and for that wewill
only show the testing result to compare among various
divergences. We have generated samples from the
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(1- ) Poisson (2) + € Poisson (15) mixture for e = 0;
0.1 and various sample sizes n = 20, 50, 100. Each
experiment is replicated 5000 times and all penalized
methods have been implemented by reducing the penalty
weightsto 50 per cent of their normal weights. Herewe
have the taken 8 = —1/2 as the specific case of study in
our investigation leading to the four different variants
of the Hellinger distance, viz, the Hellinger distance
(HD; PD with f=-1/2), the penalized Hellinger distance
(PHD; PPD with g = —1/2), the logarithmic Hellinger
distance (LPD with g = —-1/2) and the penalized
logarithmic Hellinger distance (PLHD; PLPD with 3 =
—1/2). Table 2 gives usthe observed levelswhile testing
Hp: 6 =2 and the powers given in table 3 considering
the testing problem Hy : 6 = 3. It is obvious that in
genera the PLHD leads to improvements of the same
order over the ordinary LHD, asthe PHD does over the
ordinary HD. The PHD and the PLHD are generaly
competitivein their performance, and both can serve as
excellent choicesfor parametric hypothesistesting; both
have very good small sample efficiencies and strong
robustness properties. However, in case of the Rao test
the PHD is overly conservative, particularly in small
samples, while the PLHD provides more reasonable
levelsin this case.

CONCLUSION

Thelogarithmic power divergence family can bean
useful candidate in minimum distanceinference. Inthis
paper we have shown that thisfamily is closely related
to the ordinary power divergence, and generate very
similar inference asthe ordinary power divergence; we
have demonstrated this in the paper both theoretically
and through simulations. Thus the inference methods
based on the minimum LPD family can be very useful
tools for the practitioner. Our limited study clearly
indicates that there may be many benets of using the
inference methods based on the LPD or PLPD families.
In addition, our results give some general indication of
the possibility of developing new and useful divergences
using the (h, ¢) route.
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