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ABSTRACT

The power divergence family (PD; Cressie and Read, 1984) and the density power divergence family (DPD; Basu et al.,
1998) are two of the most important constituents of the literature on the density-based minimum distance inference. The
power divergence family is, arguably, the most prominent member of the class of -divergence family (Csiszár, 1963). Patra
et al. (2013) demonstrated that a mathematical link exists between the PD and the DPD families. In this paper we have
demonstrated that such links exist more generally between other variants of the DPD family and the generalized-divergences
called the (h, φ) divergences (Pardo, 2006). In particular we look at the logarithmic power divergence (LPD) family, which
may be obtained from a direct translation of the logarithmic density power divergence family (Jones et al., 2001) and explore
its role in statistical inference. Several properties of the LPD family, including the asymptotic properties of the corresponding
estimators and application of the divergence in performing tests of hypotheses are explored; the breakdown properties of the
estimator and the corresponding disparity test statistic are discussed. The LPD is a version of a divergence considered by
Renyi (1961) and we demonstrate that tests of parametric hypothesis or tests of goodness-of-fit based on the LPD family
show competitive behavior compared to those based on the original PD family. The theory developed is substantiated with
numerical studies involving simulated data.

1.  Introduction
Minimum distance methods provide a natural

technique for parametric statistical inference. Among the
dierent types of the minimum distance methods available
in the literature, the density-based minimum distance
techniques have made a dierence because many members
of this class possess full or very high asymptotic
efficiency with strong robustness properties. Several
authors, including Beran (1977), Tamura and Boos
(1986), Simpson (1987), Lindsay (1994), Pardo (2006)
and Basu et al. (2011) have contributed significantly to
this area of research.

Cressie and Read (1984) proposed a generalized
class of the density-based divergences and this family is
known as the power divergence (PD) family. Although
the primary intent of Cressie and Read in introducing
this family was testing multinomial goodness-of-fit, the
family of the power divergences have been extensively
used in the robust minimum distance estimation. The
power divergence family is a subclass of the family of
φ-divergences (Csiszár, 1963).

Basu et al. (1998) introduced the family of the density
power divergence (DPD). The divergences within this
family also show attractive robustness properties.
Although the estimators within this class do not have
full asymptotic efficiency, several members within this
class generate highly robust estimators with only nominal
loss in asymptotic efficiency. Both the PD and the DPD
families use downweighting based on powers of densities
in their robustness scheme.

Recently, Patra et al. (2013) examined the
mathematical structure of the PD and the DPD families

and demonstrated that either family of these divergences
can be obtained from the other by simply altering the
degree of the density power downweighting. Their
findings also indicate that the DPD family is the unique
family within a large class of the divergences which
allows the estimation of the parameters in the continuous
case without any nonparametric density estimation,
strengthening the already solid credentials of the DPD
family in the parametric inference.

In this paper we have considered other related
divergences and explored some other instances of the
connection between families of the density-based
divergences those originate from the alteration of degree
of the density power downweighting. In particular, we
will consider the logarithmic power divergence (LPD),
which is a member of the (h, φ) divergences (Pardo,
2006) and is a version of the Renyi divergence (Renyi,
1961). The divergence was used by Pardo and his
associates for testing multinomial goodness-of-fit tests
(see Pardo, 2006). We are not aware of the application
of this divergence in case of parametric hypothesis testing
and we demonstrate here that the hypothesis testing
results based on the logarithmic power divergence family
are similar and competitive to those based on the ordinary
power divergence family. It also lends itself to the
improvements that result from the applications of inlier
correction techniques (Mandal and Basu, 2013).

The rest of the paper is organized as follows. Section
2 describes the PD and the DPD families and describes
the connection between them. Section 3 describes other
variants of these divergences and explores similar
connections between them. The logarithmic power
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divergence family, which stands out in this exercise, is
then chosen to explore its role in statistical inference.
Section 4 discusses the penalized LPD to illustrate the
role of inlier modication techniques whereas numerical
results invoving simulation are provided in Section 5.
Concluding remarks are presented in Section 6.

2. Background: The PD and the DPD Families
2.1 The Power Divergence Family

Let G represent the class of all distributions having
densities of the appropriate measure. The power
divergence (PD) family of Cressie and Read (1984)
defines a density-based divergence between two densities
g and f, as a function of a single real tuning parameter
λ ∈ , as

(1)

The divergences corresponding to  λ = 0 and
λ = –1 cannot be directly obtained from Equation (1)
and they have to be obtained using the continuous limits
of the functional form in Equation (1) as  λ → 0 and
λ → –1, respectively. These divergences are given by

(2)

(3)
The class of divergences defined by Equation (1)

represents a rich class of the density-based divergences
and includes several well-known divergences such as
the Pearson’s Chi-Square (PCS), the likelihood disparity
(LD), the Hellinger distance (HD), the Kullback-Liebler
divergence (KLD) and the Neyman’s Chi-Square (NCS)
as special cases, corresponding to  λ = 1, 0; –1/2; –1
and – 2, respectively. For the purpose of parametric
estimation one replaces the density f in Equation (1) with
fθ , a member of a parametric family of densities

and finds the minimum
distance estimator of θ as a function of the distribution
G by minimizing PDλ(g; fθ) over  θ ∈Θ , where g
represents the density function corresponding to the
distribution G. In actual practice, given a random sample
X1, ........, Xn from the true data generating distribution
G, one constructs a nonparametric density

estimate  of g and minimizes PDλ( ; fθ) over θ ∈Θ
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to find the minimum divergence estimator of θ.
In particular when the data are generated from a

discrete model, the vector of the relative frequencies
represent the canonical choice for . Without loss of
generality let the support of the random variable be χ =
{0; 1, ...... }. Let dn(χ) be the relative frequency of the
value χ based on the sample. Then the minimum power
divergence estimator  may be dened by the relation 

= arg minθ ∈Θ PDλ(dn ; fθ), where

It can be easily seen that the estimator  is a function
of λ also, which we have suppressed for brevity.

2.2 The Density Power Divergence (DPD) Family
The minimum distance inference method described

in the previous section for the discrete models can easily
be extended to the continuous models also. However,
for continuous models one has to use some
nonparametric smoothing technique such as kernel
density estimation to construct an estimate of the true
density (see, e.g., Basu et al., 2011). The estimation
method based on minimizing the PD family inherits all
the associated complications of kernel density estimation
including and the slower rate of convergence of the kernel
density estimate in higher dimensions. To overcome this
issue, Basu et al. (1998) proposed the density power
divergence (DPD) which successfully estimates the true
density without using any kernel density technique.
Given densities g and f for distributions G and F
respectively, the density power divergence is defined in
terms of a nonnegative tuning parameter , as

(4)
This divergence is not directly defined for  α = 0 and

needs to be obtained as the continuous limit of the above
functional form as  α → 0. This generates

(5)
which, incidentally, is identical to the divergence PD0
(g; f) given in Equation (2). This is the only divergence
which is common to both the PD and the DPD families.
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Patra et al. (2013) pointed out an interesting
connection between these two families. We can express
the power divergence between two densities g and f as

(6)
This is just a rewriting of Equation (1) and does not
change the integral. In addition, the form given in
Equation (6) makes the integrand (and not just the
integral) non-negative. Suppose we wish to modify this
divergence so that the modified form preserves the
divergence properties and the corresponding minimum
divergence estimator avoids nonparametric density
estimation. To do this we need to eliminate the terms
that contain a product of a nonlinear function of g with
some function of f and for this we only need to adjust
the term (g/f)1+λ in Equation (6). As the expression within
the curly braces is nonnegative and equals zero only if
g = f, we can replace the outer f term in Equation (6) by
f1+λ and still get a valid divergence that simplies to

(7)
which is a scaled version of the divergence given in
Equation (4) for  λ = α. Interestingly, the above operation
generates strongly robust divergences starting from
divergences that are highly non-robust and vice versa.
For example, starting from the Pearson’s chi-square
divergence we derive the L2-distance which is highly
robust.

We can also reverse the above transformation to get
the power divergence family from the density power
divergence family by replacing the outer f 1+α term in

(8)

with f. After simplication, the divergence is easily seen
to be equal to a scaled version of the PDα family.

Patra et al. (2013) actually considered a more general
class of divergences given by

(9)

where β > 1, δ is the Pearson residual and η(y) =

for some finite set T with elements in R and

real coefficients  {at} such that η(.) is nonnegative on
[0, ∞) and η(y) = 0 only when y = 1. They found that the
restrictions necessary for ρ(g, f) to be a genuine statistical
divergence as well as those necessary for avoiding
nonparametric smoothing for the purpose of the
estimation for continuous models; the authors
demonstrated that this leads to the DPD family with
parameter β – 1 as the unique solution.
2.3 (h, φφφφφ)-Divergence Family
Csiszár (1963) and Ali and Silvey (1966) provided a
general class of divergences between two densities.
Given densities g and f, this class is defined by

(10)

where φ(.) is a convex function such that φ(1) = 0. The
class of the power divergence family is a subclass of
φ-divergences. Menéndez et al. (1995) described the
(h, φ)-divergence between two densities g and f as

(11)

where h is a real, increasing, differentiable function on
the range of the φ divergence. Pardo (2006) provides an
useful list of specic φ and (h, φ) divergences.

3 The Logarithmic Power Divergence and the
Logarithmic Density Power Divergence Families
Jones et al. (2001) considered several variants of the
DPD family, which allow for other forms of the density
power downweighting without requiring any
nonparametric smoothing. A class of divergences of this
type is the logarithmic density power divergence (LDPD)
family given by

(12)
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where LDPD stands for the logarithmic density power
divergence. This form has striking similarities with the
DPD family, and may be considered to be a modication
of the latter where the identity function is replaced by
the logarithmic function. In the spirit of the connection

between the PD and the DPD described in Equation (7),
the LDPD family is also seen to be similarly connected
in the same manner to an (h, φ) divergence; the h and φ
functions are defined later in Section 3.2. In particular
the LDPD family can be written as

(13)

Replacing each f 1+α term with f in Equation (13) leads
to the divergence

(14)

We standardize this further to express this divergence

as . In this form the divergence

generates the divergences  g log  and  f log

 as  α → 0 and  α → –1, respectively; these limiting

divergences are the same as the corresponding limiting
divergences in case of the PD family, as given in Equation
(1). The family of divergences in Equation (14) will be
called the logarithmic power divergences (LPD); using
a different symbol for the tuning parameter, this
divergence has the form

(15)

3.1 The LPD as a divergence
The LPD has known forms for β = 0 or –1 (in the

limiting sense). For other values of β we have the
following theorem.

Theorem 1. The LPD is a divergence for
β ∈  \ {0, –1}

Proof. Note that,

Now let us consider the function k(χ) = χ1+β, where
χ > 0. Then, k′(χ) = (1+β) χβ and k′′(χ) = β (1+β)χβ–1.
So when β > 0 or β < –1, i.e., β(1+β) > 0, k′′(χ) > 0,
implying k(χ) is strictly convex, and when –1 < β < 0,
i.e., β (1 + β) < 0, k(χ) is strictly concave. Therefore,
when β(1 + β) > 0, using Jensen’s inequality we get,

On the other hand when β(1 + β) < 0, Jensen’s inequality
gives

In either of the above two cases, the inequality becomes
an equality if and only if g ≡  f, identically. Therefore, in
either case we have,

with equality if and only if g ≡  f. This completes our
proof.

Statistical Inference based on the Logarithmic Power Divergence
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3.2 The LPD as a (h, φφφφφ)-divergence
Pardo (2006) described the (h,  φ)-divergence as

(16)

where h and φ have the usual properties. It can be easily
shown that the PD family is a member of the φ-divergence
family (for details see Basu et al., 2011). Now, the LPD
family can be written as

Now if we denote PDβ(g, f ) as y, then LPDβ(g, f ) can
be denoted as  Ψ(y), where

It is easy to check that  Ψ(y) is an increasing function of
y. Thus the LPD defines a genuine (h, φ) divergence in
the sense of Equation (16).

3.3 The Minimum LPD estimator and its Estimating
Equation

The minimum LPD estimator  of θ at a density g is
defined by the relation

The estimating equation of the minimum LPD estimator
at a density g is given by

– ∇LPDβ(g, fθ) = 0,
where ∇ represents derivative with respect to θ. The
estimating equation has the form

(17)
Following the same terminology we can write the PD
family as

(18)

The corresponding estimating equation will be
– ∇PDβ(g, fθ) = 0,

which gives

(19)

It is clear that Equations (17) and (19) are identical
equations. This implies that though the PD and the LPD
families have different functional forms, they have
identical estimating equations which implies both the
minimum LPD and the minimum PD estimators are the
same. This is expected, since the LPD is an increasing
function of the PD.

3.4 Asymptotic Distribution of the minimum LPD
estimator

As shown in the Section 3.3, the minimum PD
estimator and the minimum LPD estimators are the same;
consequently they will have the same asymptotic
distribution. Under some regularity conditions, there
exists a consistent sequence θn of roots to the minimum
LPD estimating equation and the asymptotic distribution
of n1/2(θn – θg) is multivariate normal with mean vector

0 and covariance matrix  where θg is the best

fitting parameter as defined in Section 2.3, Basu et al.
(2011), and Jg and Vg are as defined in Basu et al. (2011,
Theorem 2.19).

3.5 The Minimum LPD Estimator : The Discrete
Model
Let X1, X2, ........ Xn be n independently and identically
distributed observations from a discrete population G,
modeled by the parametric family
Fθ = {fθ : θ ∈Θ ⊆ p}. Without loss of generality, we
can assume that the support of the distribution G is χ =
{0, 1, 2,.......}. Let dn(χ) be the relative frequency of the
value χ in the random sample. Then the minimum LPD

estimator  of θ is defined by the relation

3.6 Using the LPD in Testing of Hypothesis
Using a discrete model and the parametric set up of

Section 2.1, consider the null hypothesis
H0 :  θ ∈Θ0 (20)

where Θ0 is a proper subset of the parameter space Θ.
Let r be the number of independent restrictions imposed
by the null hypothesis. The deviance test statistic based

Maji et al.
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on the LPD is defined by

(21)

where  and  are the estimates of  under the null
hypothesis and without any restrictions respectively.
Although the minimum PD and LPD estimators are
identical, the same does not hold for the deviance statistic

based on the PD and the LPD. We will now find the
asymptotic null distribution of the test statistic given in
Equation (21). Though the PD and the LPD deviance
statistics are not themselves identical, they are
asymptotically equivalent and we will derive the
asymptotic null distribution of the deviance test statistic
based on the LPD by demonstrating the same. The result
corresponding to the PD is derived, for example, in Basu
et al. (2011). The LPD can be written as

The PD deviance statistic is defined by
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Hence  and thus . Replacing these results in Equation (23) gives us

including Bishop, Fienberg and Holland (1975),
Fienberg (1980), Agresti (1984), Freeman (1987), Read
and Cressie (1988) and more recently, Pardo (2006) and
Basu et al. (2011) consider different aspects of this
problem. The LPD can be used for the multinomial
goodness-of-fit testing problem as well. Suppose we have
a k-cell multinomial with probability vector
π = (π1, π2, .... πk). Based on a multinomial sample which
leads to a frequency of ni in the i-th cell, i = 1, ...k,

, we are interested in testing the null

hypothesis
H0 : π = π (θ)

for some unknown θ  which is an s-dimensional
parameter (s < k –1) taking values in the set Θ. Then the
goodness-of-fit statistic based on the LPD divergence is
given by

where   being the observed

proportion of the i-th cell, i = 1, ....., k and  is the

minimum LPD estimator of θ defined by LPD

 = LPD . Under H0 the LPD test

statistic has an asymptotic distribution (Pardo,
2006). When the null fully specifies the probability
vector, the degrees of freedom of the χ2 distribution is
(k – 1).

3.8 Breakdown Properties
3.8.1 Breakdown point of the minimum LPD
Estimator
As discussed in the Section 3.3, both the minimum LPD
estimator and the minimum PD estimator are the same
and so we can conclude that both have identical
breakdown properties. See Basu et al. (2011) for a
discussion of the breakdown properties of the minimum
PD estimator.

Thus the null distribution of the deviance statistic
based on the LPD follows  the limiting χ2 distribution.

3.6.1 Testing of hypothesis using the Rao and Wald
Statistics

The test statistic in Equation (21) may be considered
to be the analogue of the likelihood ratio test. One can
also perform tests of hypothesis for the null hypothesis
in Equation (20) using the Rao and the Wald statistics
based on the LPD. TheWald statistic (Wald, 1943) for
the null hypothesis in Equation (20) has the form

(27)

which has the same asymptotic null distribution as the
deviance statistic defined in Equation (21). Here  and

 are the unrestricted minimum LPD estimators of θ,
and the estimator under the null, respectively.

Under the discrete set-up, the Rao test (Rao, 1973)
for the simple null hypothesis can be performed through
the statistic

 (28)

where

and ςC(dn, fθ) is any divergence within the LPD class.
The Wald statistic involves the divergence only

through the parametric estimate and for that reason both
the PD and the LPD families will generate the same Wald
Statistic. The derivation in Section 3.3 shows that the
Rao statistics for the two cases are asymptotically
equivalent under the null hypothesis.

3.7 Multinomial Goodness-of-Fit Testing using the
LPD
Multinomial goodness-of-fit testing is one of the oldest
classical techniques in statistics and date goes back to
more than a century (Pearson, 1900). Several books

(25)

(26)
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3.8.2 Power Breakdown of the LPD based deviance
statistic

We have already observed that while the minimum
PD and minimum LPD estimators are identical, the test
statistics for testing parametric hypothesis based on the
PD and LPD are not so, although they are asymptotically
equivalent under the null. Here we will briefly study the
power influence function of the LPD based deviance
tests. Consider the hypothesis and the set-up of Section

3.6. We will follow the approach of Simpson (1989) to
determine the power breakdown point of the disparity
difference tests. Consider the functional

(29)
as a function of the distribution point G (having density
g), where

Let

where t is a generic functional, G ∈ g, V is a

contaminating distribution and tmin = t(F). From

the functional φ as defined in (29), we will refer ∈(G; φ)
as the power-breakdown point, since for a contamination
proportion below ∈(G; φ) the deviance test will be
consistent, so that it will eventually reject a false
hypothesis and so asymptotically there will be no power
breakdown. For the true distribution G and the
contaminating distribution V, let u = (1– ∈)g + ∈v
represent the density of the contaminated distribution
U, where v represent the contaminating density and u is
the density of U, the mixture of the target and the
contamination. To find the power breakdown at G one
needs to analyze the behaviour of the quantity

  (30)

Following Simpson (1989), we will determine a

lower bound for LPD  and an upper bound

for LPD   for all possible distributions V ∈G.
It is clear that if the lower bound derived is strictly greater
than the upper bound then we can conclude that power
breakdown will not occur.

The LPD(g; fθ) family has the form

Table 1: Bound for Power Breakdown of the LPD
Disparity Tests

β↓ 01 →  4 8

– 0:25 0.1942 0.4160
– 0:50 0.1341 0.3974
– 0:75 0.0066 0.1566

We then obtain the necessary upper and lower bounds as

and

Statistical Inference based on the Logarithmic Power Divergence
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After some routine simplifications based on the
bounds, we see that break-down cannot occur, i.e. φ(U)
in Equation (30) is greater than zero, for

(31)
Example: Let fθθθθθ denote the Poisson density with
mean. We want to test the hypothesis

H0 : θ = θ0 against H1 : θ ≠ θ0
Table 1 gives the results for the breakdown bound in
Equation (31) for several combinations of β and θ, when
θ0 = 1. The true density g is the Poisson density fθ1

 . The
results corresponding to β = –1/2 match with the results
of Simpson (1989).

4 Inlier Modication
One of the main attractive features of the minimum

divergence procedures such as those based on the PD
and the LPD families is that many members within these
families have automatic robustness properties under data
contamination. Lindsay (1994), Basu and Lindsay (1994)
and several later authors have characterized the outliers
probabilistically in this context, rather than
geometrically, although the concepts often coincide.
Formally, given the observed data density vector dn and

the model density fθ, let be a

standardized residual. An observation x will be called

an outlier if δ (χ) is a large positive value. Clearly the
robust minimum divergence procedures will have to
strongly downweight the large δ observations to keep
the impact of these observations under control. On the
other hand, many of the robust minimum divergence
methods (including those within the PD and the LPD
families) provide an improper treatment of inliers, which
are cells that have less data than are predicted by the
model. Many of these divergences put unduly large
weights on the inliers which appear to adversely affect
their small sample efficiencies. To overcome this
problem several inlier modification techniques are
available in the literature. The most commonly used
method in this context is the technique of penalized
disparities (see Harris and Basu, 1994; Basu et al., 1996;
Basu and Basu, 1998; Park et al., 2001; Basu et al.,
2002; Pardo and Pardo, 2003; Alin, 2007; Basu et al.,
2010). Here we will discuss use of the penalized disparity
in controlling inlier problem in the LPDs.
4.1 The Penalized LPD

Following the approach of Basu et al. (1996), we
will establish the form of the penalized version of the
LPD. The LPD has the form

(32)

Now for  we get

Maji et al.
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where G*(δ) = (1 + δ)1+β – (1 +δ ) – βδ . Now to
control the inlier we need to modify the coefficient of f
when δ(χ) = –1. For deffining the form of the penalized
LPDβ(dn, f) we will consider two cases.

Case 1 (β < –1 or β > 0) : We would like to maintain

the non-negativity of each of the terms while changing
the coefficient of the second term and that can be done
easily just by a positive constant (k, say). Therefore, the
penalized LPDβ(dn, f) is defined as

for k > β to maintain the non-negativity of each terms.

4.1.1 Estimating Equation
The estimating equation of the penalized LPD would be

Comparing (35) and (37), we can say that both

equations are identical when 

4.2 Goodness-of-Fit using the inlier modified LPD
Consider the goodness-of-fit testing problem as a k-

cell multinomial for the equi-probable null

H0 : πi = 

Statistical Inference based on the Logarithmic Power Divergence
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(34)

(33)

(34)

(37)
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against the alternative hypothesis

(38)

where  is a constant.

The goodness-of-fit test statistic has the form

The asymptotic distribution corresponding to the
penalized LPD closely follows the approach of Mandal

and Basu (2013). We omit the proof here, but the
asymptotic null distribution is χ2(k – 1).

5  Simulation Example
In this section we will give a simulation scheme using

the LPD and its penalized version with the corresponding
member of the PD family.

5.1 Testing using the Penalized LPD
As shown in the earlier sections, the estimators under

the minimum PD method and the corresponding
minimum LPD method will be same and for that we will
only show the testing result to compare among various
divergences. We have generated samples from the

Table 2: Comparison of the observed levels of the testing methods based on the two families at nominal level
0:05

Method ∈ n PHD HD PLHD LHD

20 0.0474 0.1068 0.0464 0.1104
0 50 0.05 0.0846 0.049 0.088

Deviance 100 0.0518 0.0808 0.0498 0.0842

20 0.054 0.1238 0.0536 0.1326
0.1 50 0.0584 0.093 0.0608 0.1068

100 0.0644 0.0768 0.0696 0.0868

20 0.0272 0.1118 0.0382 0.1426
0 50 0.0414 0.0862 0.047 0.097

Rao 100 0.045 0.0836 0.0472 0.0894

20 0.0228 0.1114 0.0442 0.1614
0.1 50 0.0396 0.0846 0.059 0.1136

100 0.0482 0.0722 0.065 0.091

Table 3: Comparison of the observed powers of the testing methods based on the two families at nominal
level 0:05

Method ∈ n PHD HD PLHD LHD

20 0.8004 0.908 0.8282 0.9404
0 50 0.9954 0.9984 0.9956 0.9984

Deviance 100 1 1 1 1
20 0.7134 0.8676 0.7644 0.9186

0.1 50 0.9792 0.9926 0.98 0.994
100 0.9998 0.9998 0.9998 0.9998

20 0.7014 0.9142 0.7614 0.9318
0 50 0.9942 0.9984 0.9952 0.999

Rao 100 1 1 1 1

20 0.531 0.8516 0.6592 0.9032
0.1 50 0.9596 0.9896 0.9734 0.9926

100 0.9996 1 1 1

Maji et al.
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(1– ∈) Poisson (2) + ∈ Poisson (15) mixture for ∈= 0;
0.1 and various sample sizes n = 20, 50, 100. Each
experiment is replicated 5000 times and all penalized
methods have been implemented by reducing the penalty
weights to 50 per cent of their normal weights. Here we
have the taken β = –1/2 as the specific case of study in
our investigation leading to the four different variants
of the Hellinger distance, viz., the Hellinger distance
(HD; PD with β = –1/2), the penalized Hellinger distance
(PHD; PPD with β = –1/2), the logarithmic Hellinger
distance (LPD with β = –1/2) and the penalized
logarithmic Hellinger distance (PLHD; PLPD with β =
–1/2). Table 2 gives us the observed levels while testing
H0 :  θ = 2 and the powers given in table 3 considering
the testing problem H0 :  θ = 3. It is obvious that in
general the PLHD leads to improvements of the same
order over the ordinary LHD, as the PHD does over the
ordinary HD. The PHD and the PLHD are generally
competitive in their performance, and both can serve as
excellent choices for parametric hypothesis testing; both
have very good small sample efficiencies and strong
robustness properties. However, in case of the Rao test
the PHD is overly conservative, particularly in small
samples, while the PLHD provides more reasonable
levels in this case.

CONCLUSION
The logarithmic power divergence family can be an

useful candidate in minimum distance inference. In this
paper we have shown that this family is closely related
to the ordinary power divergence, and generate very
similar inference as the ordinary power divergence; we
have demonstrated this in the paper both theoretically
and through simulations. Thus the inference methods
based on the minimum LPD family can be very useful
tools for the practitioner. Our limited study clearly
indicates that there may be many benets of using the
inference methods based on the LPD or PLPD families.
In addition, our results give some general indication of
the possibility of developing new and useful divergences
using the (h, φ) route.
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