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Some ageing properties of Dynamic Additive Mean Residual Life Model
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ABSTRACT
Although proportional hazard rate model is a very popular model to analyze failure time data, sometimes it becomes important
to study the additive hazard rate model. Again, sometimes the concept of the hazard rate function is abstract, in comparison to
the concept of mean residual life function. A new model called ‘dynamic additive mean residual life model’ where the covariates
are time-dependent has been defined in the literature. Here we study the closure properties of the model for different positive
and negative ageing classes under certain condition(s). Quite a few examples are presented to illustrate different properties of
the model.

Keywords : Additive mean residual life function, ageing property. AMS 2010 Classifications: Primary 62N05; Secondary 90B25.

1.  Introduction
In the literature, a large number of papers deal with

modeling and analyzing data on the time until occurrence
of an event. These events sometimes represent the time
to failure of a system of components or a living organism.
Cox’s [2] proportional hazard rate model has been used
to model failure time data. This model is very popular
for analysis of right-censored data, and has been used
for estimating the risk of failure associated with vector
of covariates.

Although multiplicative hazards model is mostly
studied in literature, it is important to study the additive
hazard rate model as well. This is because from the public
health point of view it is very important to study the risk
difference than the risk ratio in describing the association
between the risk factor and the occurrence of a disease,
see, for instance, Breslow and Day [9, 10]. They have
shown that additive hazard rate model fits certain type
of data better than the proportional hazard model. Lin
and Ying [3] have shown that the additive hazards model
provides a simple structure for studying frailty models
and interval-censored data, which are very difficult to
deal with under the proportional hazards model. A family
of proportional and of additive hazards models for the
analysis of grouped survival data has been considered
by Tibshirani and Ciampi [13]. Mckeague and Utikal
[7] have developed goodness-of-fit tests for Cox’s
proportional hazards model and Aalen’s additive risk
model, and each model has been compared on an equal
footing with the best fitted fully nonparametric model.
Using generalized linear models (GLM), Hakulinen and
Tenkanen [15] have shown how a proportional hazards
regression model may be adapted to the relative survival
rates. Bad´ia, Berrade and Campos [4] have studied some
ageing characteristics of additive and of proportional
hazard mixing models. They have also studied the effect
of mixing on stochastic ordering. Martinussen and
Scheike [16] have compared the full Aalen additive

hazards model and the change-point model, and
discussed how to estimate the parameters of the change-
point model. The analytical properties of additive
hazards model have been studied by Nair and Sankaran
[11]. They have compared the ageing properties of the
baseline random variable and the induced random
variable. Li and Ling [12] have discussed the ageing
and the dependence properties in the additive hazard
mixing model. Some stochastic comparisons have also
been studied in this paper. Bin [6] has discussed
regression analysis of failure time under the additive
hazards model, when the regression coefficients are time-
varying.

Sometimes the concept of hazard function becomes
abstract, in comparison to the concept of mean residual
life (MRL) function. The hazard rate is the instantaneous
failure rate at any point of time, whereas the MRL
summarizes the entire residual life. The MRL function
has more intuitive appeal for modeling and analysis of
failure data than the concept of hazard rate function. With
this in mind, the additive mean residual life (AMRL)
model has been developed. The AMRL model specifies
that the MRL function associated with the covariates is
the sum of the baseline MRL function and the constant
representing the function of covariates. For example, a
new drug prescribed to a patient may work well in the
beginning of the treatment period, but after a certain time
the effect of the drug may decrease. Then it is very
important to know when and how fast the drug becomes
ineffective, see, for instance, Bin [6]. AMRL model helps
us design further studies to explore the treatment
strategies for patients. In some practical situations, the
covariates may not be constant over the whole time
interval [0,1), but they may vary over different time
intervals. Using this idea Das and Nanda [14] have
developed a new model called dynamic additive mean
residual life (DAMRL) model. They have studied the
closure of this model under different stochastic orders.
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In section 2 we give a brief description of the
DAMRL model, section 3 provides some ageing classes
under the DAMRL model with some illustrative
examples, and Section 4 concludes the manuscript.

Throughout the paper, increasing and decreasing
properties of a function are not used in strict sense. For
any twice differentiable function g(t), we write g′(t) and
g′′ (t) to denote the first and the second derivatives of
g(t) with respect to t, respectively. We denote by

a  b to mean that a and b have the same sign,
whereas  α β tells that α is defined by β.

2. Dynamic Additive Mean Residual Life Model
Let X be a nonnegative random variable with finite

mean, survival function  and hazard rate function
rX(·). Then the MRL is given by

for t ≥ 0 such that > 0.
Let X* be a nonnegative absolutely continuous

random variables having MRL function mX*(t). Then
the AMRL model is given by

mX*(t) = c + mx (t), (2.1)
where c is a function of covariates, independent of t
such that c+mX(t) is nonnegative for all t. Das and Nanda
[14] have shown that Additive Hazard Rate model and
AMRL model in general do not imply one another. For
some more work in this direction, one may refer to Yin
and Cai [5], Sun and Zhang [8] and the references there
in. If the covariates are time-dependent, the AMRL
model reduces to dynamic AMRL model given by

mX*(t) = c(t) + mX (t). (2.2)
Before going to discuss some results we give a lemma
without proof, which gives some conditions on c(t)
[cf. Das and Nanda [14]].

Lemma 2.1 If two nonnegative random variables X and X* satisfy (2.2), then the following conditions must be
satisfied:

Remark 2.1 It is easy to see that if c(t) is increasing in
t ≥ 0, then the condition (iii) of Lemma 2.1 trivially
holds, whereas when c(t) ≥ 0, for all t, condition (i) of
Lemma 2.1 automatically holds.

Again, it can be noted that

(2.3)
3. Properties of Some Ageing Classes

Ageing is an inherent property of a unit that may be
a system of components or a living organism. It is
characterized by various quantities, viz., hazard rate,
mean residual life etc. By ageing we generally mean the
adverse effect of age on the random residual lifetime of
a unit. To be specific, by ageing we generally mean
positive ageing, which means that an older system has a
shorter remaining lifetime, in some statistical sense, than
a newer one. In this section we have studied the closure

of different ageing properties such as IFR (increasing in
failure rate), IFRA (increasing failure rate in average),
NBU (new better than used), NBUFR (new better than
used in failure rate), NBAFR (new better than used in
failure rate average) and their duals with time-dependent
covariate(s).

In this section we study the condition(s) under which
X and X* satisfying (2.2) share some ageing properties.
The following theorem shows that under the model (2.2),
the IFR (resp. DFR) property of X is transmitted to the
random variable X* under certain condition on c(t). Keep
in mind that a random variable X with failure rate function
rx(·) is said to be IFR (resp. DFR) if rx(t) is increasing
(resp. decreasing) in t.

The following theorem states the conditions for X*
to be IFR. Here we need c(t) to be positive.

Theorem 3.1 If the random variable X is IFR, then
the random variable X* satisfying (2.2) is IFR provided,
for all t ≥ 0,

(i) is increasing in t;

(ii) c(t) is logconvex.
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Proof : Differentiating (2.3) with respect to t, we get

(3.4)

Now, the first term in the above expression is
nonnegative because X is IFR, the second term is
nonnegative due to (i) in the hypothesis, the third term
is nonnegative because of (ii), and finally the last term

is nonnegative if  is increasing in t, which is always

true. This is because, by (ii), c(t) is convex, which implies
that c′(t) is increasing in t, and since X is IFR, it is also
DMRL, so that mx(t) is decreasing in t. Hence, X* is
IFR.

We now present an application of Theorem 3.1.
Example 3.1 Let X follow standard exponential

distribution. Take c(t) = exp(–t), for all t ≥ 0. Clearly,
c(t) satisfies all the conditions of Lemma 2.1. Again,
conditions (i) and (ii) of Theorem 3.1 are also satisfied.
Hence, by Theorem 3.1, X* is IFR.

The following counterexample shows that condition
(i) of Theorem 3.1 is a sufficient condition but not
necessary.

Counterexample 3.1 Let X be a random variable
having mean residual life mX(t) = 1/(2+t), t ≥ 0. Take
c(t) = 1/(3 + t), for all t ≥ 0. Then c(t) satisfies all the
conditions of Lemma 2.1. Again, condition (ii) of
Theorem 3.1 is satisfied while condition (i) is not. Now,
for all t ≥ 0,

which can be shown to be increasing in t. Thus, X* is
IFR. Hence, condition (i) of Theorem 3.1 is a sufficient
condition but not necessary.
Remark 3.1 By taking X to be a standard exponential
distribution, and

one can show that condition (ii) of Theorem 3.1 is a
sufficient condition but not necessary.

The following theorem states the conditions for X*
to be DFR. Here we need c(t) to be positive. The proof
being similar to that of Theorem 3.1 is omitted.

Theorem 3.2 If the random variable X is DFR, then
the random variable X* satisfying (2.2) is DFR provided,

(i)  is decreasing in t;

(ii) c(t) is increasing and concave;
for all t ≥ 0.
Here we present an application of Theorem 3.2.
Example 3.2 Let X be a random variable having

the failure rate

Take c(t) = t/(1+t), for all t ≥ 0. Clearly, c(t) satisfies
all the conditions of Lemma 2.1. One can verify that

 is decreasing in t ≥ 0 and also c(t) is concave.

Thus, by Theorem 3.2, X* is DFR.

Remark 3.2 In Example 3.2 if we take c(t) = ,

for all t ≥ 0, then it can be seen that condition (i) of
Theorem 3.2 is a sufficient condition but not necessary,
while if in the same example we take

(3.5)

then it can be shown that condition (ii) of Theorem 3.2
is a sufficient condition but not necessary.

The following theorem shows that the DAMRL
model preserves the IFRA (increasing failure rate in
average) (resp. DFRA (decreasing failure rate in
average)) property under certain conditions on c(t). It is
useful to remind that a random variable X with failure
rate function rx(·) is said to be IFRA (resp. DFRA) if

 is increasing (resp. decreasing) in t >

0.
Theorem 3.3 If the random variable X is IFRA, then

the random variable X* satisfying (2.2) is IFRA
provided, for all t ≥ 0,
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(i)  is increasing in t; (ii)  is increasing in t.

Proof : Note, from (2.3), that

= P(t), say
Differentiating P(t) with respect to t, we get that P′(t) ≥ 0 for all t ≥ 0, if

Now, since X is IFRA, it can be shown that (a) holds if

which is true by (i). Further, (b) holds by (ii). Hence, the result follows.

Remark 3.3 Note that Example 3.1 can be
considered as an application of Theorem 3.3.
Counterexample 3.1 can be considered to show that
condition (i) of Theorem 3.3 is a sufficient condition
but not necessary. That condition (ii) of Theorem 3.3
cannot be dropped, can be seen by taking X as a standard
exponential random variable, and c(t) = 1/(2 + t2), for
all t ≥ 0.

The following theorem whose proof is similar to that
of Theorem 3.3, shows that the DAMRL model preserves
the DFRA property under certain conditions on c(t).

Theorem 3.4 If the random variable X is DFRA, then
the random variable X* satisfying (2.2) is DFRA
provided, for all t ≥ 0,

(i)  is decreasing in t;

(ii)  is decreasing in t.

Remark 3.4 An application of the above theorem
can be considered by taking X as standard exponential
and c(t) as given in (3.5).

Remark 3.5 Considering X as in Example 3.2 and

c(t) = , t ≥ 0, one can see that condition (i) of

Theorem 3.4 is a sufficient condition but not necessary.
That condition (ii) of Theorem 3.4 is a sufficient
condition can be seen by considering

and X as in Example 3.2.
The following theorem shows that the DAMRL

model preserves the NBU (new better than used) (resp.
NWU (new worse than used)) property under certain
conditions on c(t). It is useful to remind that a random
variable X is said to have NBU (resp. NWU) property if

Theorem 3.5 If the random variable X is NBU, then
the random variable X* satisfying (2.2) is NBU,
provided, for all t ≥ 0,

(i) is logconvex;

(ii)   is decreasing in t.

Proof : It can be shown that X* is NBU if and only
if, for all x, t ≥ 0,
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Since x is NBU, it is sufficient to show that, for all χ, t ≥ 0,

This holds if

This is true if the hypotheses are true.
Remark 3.7 Since a concave function is logconcave,

condition (i) of Theorem 3.6 can be re-placed by ‘

is concave’.
Remark 3.8 To present an application of Theorem

3.6, one may take X as a standard exponential random
variable, and c(t) = t/(1 + t), t ≥ 0.

The following counterexample shows that condition
(i) of Theorem 3.6 is a sufficient condition but not
necessary.

Counterexample 3.2 Let X be a random variable
with survival function

It is shown in Nanda, Das and Balakrishnan [1] that
X is NWU. Take

Remark 3.6 Example 3.1 can be taken as an
application of Theorem 3.5. By taking X as standard

exponential, and c(t) = ,t ≥ 0, one can show that

condition (i) of Theorem 3.5 cannot be dropped. That
condition (ii) of Theorem 3.5 is a sufficient condition
but not necessary can be seen by taking X a random

variable having mean residual life mx(t) = , for

all t ≥ 0,
The following theorem whose proof is similar to that

of Theorem 3.5 shows that the DAMRL model preserves
the NWU property under certain conditions on c(t).

Theorem 3.6 If the random variable X is NWU, then
the random variable X* satisfying (2.2) is NWU,
provided, for all t ≥ 0,

(i)   is logconcave;

(ii)  is increasing in t.

Clearly, c(t) satisfies all the conditions of Lemma 2.1. Now, we see that, for 0 ≤ t ≤ 1, ln  is not

concave. Again,

is increasing in t. Now, a tedious algebra shows that X* is NWU. Hence, the condition (i) of Theorem 3.6 is a
sufficient condition but not necessary.

Remark 3.9 Taking X to be a random variable
having mean residual life mX(t) = 1+t, t ≥ 0, and c(t) =
t, for all t ≥ 0, it can be shown that the condition (ii) of
Theorem 3.6 is a sufficient condition but not necessary.

The following theorem shows that the model in (2.2)
preserves the NBUFR (new better than used in failure
rate) property. It is useful to remind that a random
variable X is said to be NBUFR (resp. NWUFR) if rx(t)
≥  (resp. ≤) rx(0), for all t > 0. The proof is omitted.

Theorem 3.7 If the random variable X is NBUFR,
then the random variable X* satisfying (2.2) is NBUFR,
provided, for all t ≥ 0,

(i) 

(ii) 

Some Ageing Properties of Dynamic Additive Mean Residual Life Model
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Remark 3.10 Let X be a random variable having
mean residual life mX(t) = ,   t ≥  0, and

c(t) = , t ≥ 0. Then one can show that condition (i)
of Theorem 3.7 is a sufficient condition but not
necessary.

Remark 3.11 Taking X to be a standard exponential

random variable and c(t) = , t ≥  0, it can be

shown that condition (ii) of Theorem 3.7 cannot be
dropped.

Corollary 3.1 If the random variable X is NBUFR,
then the random variable X* satisfying (2.2) is NBUFR
provided, for all t ≥ 0,

(i)  is decreasing in t;

(ii)  is increasing in t.

Remark 3.12 Example 3.1 can be considered as an
application of Theorem 3.7 and also of Corollary 3.1. 

The following theorem shows that the model in (2.2)
preserves the NWUFR property.

Theorem 3.8 If the random variable X is NWUFR,
then the random variable X* satisfying (2.2) is NWUFR,
provided, for all t ≥ 0,

(i) 

(ii) 

Example 3.3 As an application of Theorem 3.8, one
may take X to be a random variable as defined in
Example 3.2, and c(t) as defined in (3.5).

Counterexample 3.3 Let X be a random variable

as defined in Example 3.2. Taking c(t) =  , t ≥ 0,

one can show that condition (i) of Theorem 3.8 is a
sufficient condition but not necessary, where as by taking

(3.6)

one can show that condition (ii) of Theorem 3.8 cannot
be dropped.

Corollary 3.2 If the random variable X is NWUFR,
then the random variable X* satisfying (2.2) is NWUFR
provided, for all t ≥ 0,

(i)  is increasing in t;

(ii)  is decreasing in t.

Remark 3.13 Example 3.3 can be considered as an
application of Corollary 3.2.

The following theorem shows that the model in (2.2)
preserves the NBAFR (new better than used in failure
rate average) property. It is useful to remind that a random
variable X is said to be NBAFR (resp. NWAFR) if

≥ (resp. ≤) trX(0), for all t > 0.

Theorem 3.9 If the random variable X is NBAFR,
then the random variable X* satisfying (2.2) is NBAFR,
provided, for all t ≥ 0,

(i) 

(ii) .

Remark 3.14 Let X be a random variable having

mean residual life mX(t) = , t ≥ 0 and c(t) = ,

t ≥ 0. Then one can verify that X* is NBAFR. Hence,
condition (i) of Theorem 3.9 is a sufficient condition
but not necessary. That condition (ii) of Theorem 3.9

cannot be dropped, can be seen by considering X as a
standard exponential random variable and

c(t) = , t ≥ 0.
Corollary 3.3 If the random variable X is NBAFR,

then the random variable X* satisfying (2.2) is NBAFR
provided, for all t ≥ 0,

Proof : X* is NBAFR if, for all t ≥ 0,

(3.7)

Since X is NBAFR, by hypothesis (ii) we have that (3.7) holds if

which holds by (i). Hence the result follows.
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(i)  is decreasing in t;

(ii)  is decreasing in t;

Remark 3.15 Example 3.1 can be considered as an
application of Theorem 3.9 and also of Corollary 3.3. 

The following theorem whose proof is similar to that
of Theorem 3.9 shows that the model in (2.2) preserves
the NWAFR property.

Theorem 3.10 If the random variable X is NWAFR,
then the random variable X* satisfying (2.2) is NWAFR,
provided, for all t ≥ 0,

(i) ;

(ii) 

Remark 3.16 Example 3.2, with c(t) as given in (3.5),
can be taken as an application of Theorem 3.10.  

Remark 3.17 Example 3.2 with c(t) =  , t ≥ 0,

shows that condition (i) of Theorem 3.10 is a sufficient
condition but not necessary. That the condition (ii) of
Theorem 3.10 cannot be dropped, can be seen by taking
Example 3.2, with c(t) as defined in (3.6).

Corollary 3.4 If the random variable X is NWAFR,
then the random variable X* satisfying (2.2) is NWAFR
provided, for all t ≥ 0,

(i)  is increasing in t;

(ii)  is decreasing in t.

Example 3.4 Let X be a random variable as defined
in Example 3.2. Clearly X is NWAFR. Take c(t) as defined
in (3.5). In Example 3.3, we see that both the conditions
of Theorem 3.10 are satisfied. Hence, by Corollary 3.4,
X* is NWAFR.

4. CONCLUSION

In this manuscript, we study the properties of the
model m*(t) = c(t) + m(t), which may be considered as a
time-dependent additive MRL model. We have given
conditions under which m*(·) can be considered to be

an MRL function of some random variable. We have
also studied the conditions under which the variable X*
(having MRL function m*) belongs to the ageing class
C when X belongs to the class C. To be specific, let x  ∈
IFR such that x satisfies some property P. This means
that the set of random variables which belong to IFR
class satisfying the property P, defines a subclass of IFR
class, call it C. Then the results studied in this manuscript
are the closure properties of C (⊂ IFR). With the help of
counterexamples we have shown that the ageing classes
like IFR etc. are not closed under the model discussed
whereas a subclass of each of these well known classes
are closed.
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