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ABSTRACT

Redundancy allocation is one of the widely used techniques to improve the reliability of a system. Here, we discuss
different types of standby (e.g. cold, hot and warm) allocations in different types of systems, including some recent

developments in this field.
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1. Introduction

Itis a fundamental doctrine in reliability analysis that
if no compensatory measures are undertaken, the reli-
ability of a system decreases with increase in
complexity of the system. Mathematically, the reliabil-
ity is defined as the probability that a system will per-
form its intended function satisfactorily, for a specified
period of time, under a given set of conditions. Note
that, in a (series) system of n independent components

with ith component having reliability R , if no compo-

nent is redundant, then the system reliability (R) will be
R=]].Ri.

The redundant (also known as standby or spare) com-
ponents could be of three types: (i) Hot (also known as
active or parallel) standby (ii) Cold standby and (iii)
Warm standby. In hot standby, the original component
and the redundant component work together in the same
operational environment so that the life of the system is
the maximumof the lives of the original component and
the redundant component. Thus, the original component
and the standby component constitute a two-component
parallel system. In cold standby, the redundant compo-
nent starts working once the original component fails.
Here the redundant component has zero failure rate when
it is in inactive state and it starts to function under the
usual environment (in which the system is running) only
when the original component fails. Thus, the system life
is the convolution of the lives of the original component
and the redundant component. It is generally assumed
here that the standby component does not fail in the cold
state. However, in some practical situations this may not
be the case and the modelling may be done accordingly.
For example, a battery put on cold standby deteriorates
with time if it is not used for long, and as a result, it may
fail even before the original battery fails. On the other

e-mail: asok.k.nanda@gmail.com

RASHI 1 (1) : (2016)

hand, an intermediate scenario is described in warm
standby which is also known as general standby because
it gives hot standby and cold standby as particular cases.
Here the redundant component undergoes two
operational environments: initially it functions in a milder
environment where the standby has less failure rate than
its actual failure rate, and then it switches over to the
usual environment after the original component fails. If
it is known a priori (from some practical experience or
otherwise) that the active (original) component cannot
fail before some specified time t0, then a warm standby
may undergo three operational environments. To be more
specific, initially it may start as cold standby (i.e., it has
zero failure rate during the period [0, #,]), it is switched
over to warm state after #,, and put into active state in
usual environment at the time of failure of the original
component.

Warm standby is used where the switching time from
the failed component to the standby component cannot
be allowed. In this case, the standby component is kept
in a low-charging state so that the failure rate is neither
zero (as in case of cold standby) nor same as the failure
rate of the original component (as in case of hot standby),
but a state where failure rate is positive but small so that
once the component fails, the standby component starts
working immediately. This is used in case of shadowless
lamp used in case of surgery, etc. In this case, the ‘cen-
soring and switching device’ is not allowed to take any
time to start operating. It is obvious from the above
discussion that, in general, the cold standby system will
have the largest lifetime followed by the lifetime of a
warm standby system, and the hot standby system will
have the smallest lifetime. So, one may
argue that we can always use cold standby to optimize
the system lifetime. This may not be so in all practical
cases. In some situations, it is quite possible that the
redundant component needs warm up time before it starts
working. (In some play, the players may wait outside
the field and warm up themselves until they are asked to
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play in place of some player). Thus, depending on the
practical need, one may decide on what kind of standby
to be used.

Let us consider a single-component system having
lifetime X with k cold standby components (with the ith
standby having the lifetime X, i =1, 2, . ., k). Then the
system reliability at some specified time ¢, R(?), is given
by

R(O=PX,+X,+...+X >1).

If Xi has distribution function ', i =0, 1,. . .,
k, then the calculation of R(¢) becomes cumbersome
unless Fis are identical for all i. In case they are not
identical, we may sometimes use Laplace transform tech-
nique to evaluate R(¢). If the calculation becomes
intractable analytically, we may go for Monte Carlo simu-
lation technique.

In the above example, if the original compo-
nent and the k redundant components are put in a hot
standby system, the calculation becomes easier. This is
because the reliability of such a hot standby system is

R(t) = P(max{X,, X,, .. ., X)>1)

:1—ﬁ5(¢).

For discussions on hot standby and on cold
standby systems, one may refer to Boland et al. (1992),
Singh and Misra (1994), Romera et al. (2004),
Papageorgiou and Kokolakis (2007), Brito et al. (2011),
Misra et al. (2011), and the references therein.

As far as analytical development is concerned,
the warm standby system, being more general in the sense
that the cold standby and the hot standby systems are
obtained as particular cases of the warm standby system,
is complicated. Although She and Pecht (1992) have
done some work on warm standby model, to the best of
our knowledge, Cha et al. (2008) are the first to work on
warm standby models incorporating the accelerated life
model (cf. Nelson, 1990) and the virtual life model (cf.
Kijima, 1989; Finkelstein, 2007) in their analysis, fol-
lowed by the work of Yun and Cha (2010), Li et al. (2009,
2013), Eryilmaz (2013) and others.

Let X be the lifetime of the original component
with cumulative distribution function (c.d.f.) F(-) and
let ¥ be that of the spare with c.d.f. G(*), with X and ¥
independent. Consider a system where Y is allocated to
X to form a warm standby system. The life of such a
system is denoted by X &® Y . For a standby component
in warm state, it is obvious that the lifetime of the standby
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component in the milder environment is stochastically
larger than that in the usual environment. Thus, based
on the concept of accelerated life model, the lifetime of

the standby unit in warm state will have the c.d.f. G(¥
() where ¥ () is a non-decreasing function satisfying
Y (t)<t, for all t>0 with ¥ (0) = (0). Further, suppose
that the standby unit has worked during (0, t) without
failure in the milder environment, and is activated un-
der usual environment at time t. Then, according to the
virtual age model, the virtual age @ (t) of the standby
component should be non-decreasing satisfying @ (t) <

t, for all t=0 and @ (0) = 0. Let Y* denote the remain-
ing lifetime of the standby component after the failure
of'the active unit at time X=x. Now, if it is known a priori
that the standby component survives at least up to the

failure time of the active component, then (cf. Cha et al.
(2008)).

_ G(o(x)+1) =
G G(y(x))

and the reliability of the standby system is

P{Y*> (]| X=x)}

Fv;%y(t) = F(l‘)-kj.lw

" Glo() Gy (x)dF ().

(1.1)
The cold and the hot standby models can be derived

as special cases by substituting ¥ (f) = @ (¥) = 0 and
Y (©) = o (¢) = t, respectively.

Now, as discussed above, if the standby component
starts to work as cold standby, is switched over to warm
state after pre-specified time t, and is put into active
state in usual environment at the time (X = x) of failure
of'the original component, then obviously the virtual age
at time x would be @ (x —¢). Then, for ¢ > ¢, the
reliability of the system is (cf. Yun and Cha, 2010),

= = tGo—t,+)=t—x)
F.0=Fo+] == oG -1)

In the following, we discuss reliability properties of
various multi-component system equipped with standby
components. Here we give some definitions of stochastic
orders that will be used in sequel. For details of these
orders, one may refer to Shaked and Shanthikumar
(2007).

G(y (x—1,))dF (x). (1.2)

Definition 1.1 Let X and Y be two absolutely continu-

ous random variables with c.df. F (), G (9, probabil-
ity density functions f(*), g(*), hazard rate functions
A, A, (), and the corresponding reversed hazard



rate functions r () and r (), respectively. Then X is said
to be smaller than Y in the

(i) usual stochastic order (denoted as X <Y ) if
F® <G forallt;

(ii) failure (hazard) rate orvder (denoted as X < .
Y) if G @)/ F (t) is increasing in te>0, or
equivalently, if A () > A ,2(1) forall t> 0;

(iii) reversed hazard rate order (denoted as X < "
Y) if G(t)/F () is increasing in t > 0, or
equivalently, if r (t) < r (1) for all t > 0;

(iv) increasing concave order (denoted as X < WY )

if JO’ 7 (dx < j(: G (dx forall t > 0;
(v) likelihood ratio order (denoted as X < WY )iffix)/

g(x) decreases in x over the union of the supports

of Xand Y ;
(vi) probability order (also known as stochastic
precedence order) (denoted as X< o Y)ifPpP

(X>Y) < P(Y>X).

Throughout the paper we use X =s¢ Y to mean that the
random variables X and Y have the same distribution.

2 System equipped with standby components

Throughout the paper, T denotes the lifetime of a
coherent system without standby and Xj denotes the
lifetime of the ith component in the system, fori=1, 2,
.., 0. Let F be the common absolutely continuous c.d.f.
of Xj with corresponding p.d.f. /. It is known that the
survival function of a coherent system formed from the
independent and identically distributed (iid) components
can be represented by the system signature as

P{T>1t}= 2P, P{X_>1},
i=1 :

where X is the ith smallest order statistic from X, X,

WX, and pi=P{T= X } is the probability that the zth
component failure causes the system to fail. The n-
dimensional probability vectorp=(p , p,, .P, )is called
the signature of the system (cf. Kocher et al 1999;
Samaniego, 1985, 2007).

2.1. System equipped with cold standby component

Boland et al. (1992) investigated the problem of
where to allocate a standby in a system in order to
stochastically optimize the lifetime of the resulting
system. They showed that if the life distributions of the
components are ordered in the likelihood ratio order, then
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in a series (resp. parallel) system the standby (cold)
allocation should go to the weakest (resp. strongest)
component to stochastically maximize the system
lifetime. That is, if X, X, (independent and non-negative
random variables) are the lifetimes of two components
and Y (independent of X, and X)) is the lifetime of a spare
component, then

T =min{X,+Y, X} > min{X, X, +Y}=T,

X, and

hr* ™22

provided X, <

U =max{X,+7,X,} < max{X, X +Y}=U

provided X, < X,. They have also pointed out that 7,

T, if, and only if, the densities or mass functions of
X,and X, belong to a one-parameter family with
monotone likelihood ratio property. However, they
showed with an example that the condition on the hazard
rate and the reversed hazard rate orders cannot be
replaced by the condition on the usual stochastic order
to yield the same results. With an example of a 2-out-
of-3 system, they also illustrated that similar results
cannot be extended to the more general k-out-of-n
system. Singh and Misra (1994) compared the lifetimes
of series and parallel systems with a standby redundancy
in probability order. Let X, X, ..., X be the independent
lifetimes of n components and let

I"=min{X +Y, X, ., X},
I)'=min{X,X,+Y, X, ... X},
Ul'=max{X,+Y,X, ... X}

U)=max{X,X,+Y,X, .., X}.
Singh and Misra (1994) established that if X, <

X, then 7' < T"and U{' < U; . El-Neweihi and

Sethuraman (1993) considered a system where, instead
of one spare, there are n spares to be assigned, one each,
in standby redundancy to the n components, and obtained
optimal allocation results for both series and parallel
systems. They established that, for a series system, if
the components are ordered in the hazard rate ordering
and the spares are also ordered in the hazard rate
ordering, then it is optimal to allocate the spares to the
components in reverse order, that is, the stronger spares
should be allocated to the weaker components in order.
In case of parallel system, if both the components and
the spares are ordered in reversed hazard rate ordering,
then the spares should be allocated to the components
in order, that is the stronger spares should be allocated
to the stronger components in order.
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Eryilmaz (2012) presented some stochastic ordering
results for the lifetime of a k-out- of-n system with a
single cold standby component. In a k-out-of-n system
with a single cold standby unit, at the time of system
failure, i.e., at the time of (n ““ £+ 1)th failure, the standby
component is put into operation. Thus, the lifetime of a
k-out-of-n system with single cold standby unit having
lifetime Z can be represented as

X .,.2), for k=2, ...n

— { Xn-kﬂ :n+min()(n-k2:n_
X, . =Z for k=1, ...,n
Define
Ti :‘X,z-ku.-n t min()(n-k+2:n Mkl Z,) i=1,2

where Z,, Z, are the lifetimes of two different cold

standby components. He also derived that if Z, < 7.,
then

O T <,T;

(i) E(T,-1|X

n-k+1:n

> t) S E(Tg_ t | ‘Xvn—k-#].'n = t)

If the lifetimes of the components are exponentially
distributedand Z, <, Z,then T, <, T,

Papageorgiou and Kokolakis (2007) evaluated
reliability of a two-unit parallel system with (n — 2) cold
standby components where two units start their operation
simultaneously and any one of them is replaced
instantaneously upon its failure by one of the (n— 2)
cold standbys. Coit (2001) obtained reliability of a series-
parallel system with cold standby redundancy
considering both perfect and imperfect switching cases,
and developed a methodology to determine optimal
design configurations to maximize the system reliability.
Here perfect switching means perfectness of a detection
and switching mechanism used to detect failure of a
component and to activate a redundant component, if
any, and imperfect switching means that there is a
probability of failure of the detection and switching
mechanism. van Gemund and Reijns (2012) studied the
k-out-of-n system with a single cold standby component
using Pearson-type distributions and presented an
analytical approach to compute the mean failure time of
the system. Reliability function of a k-out-of-n system
equipped with a cold standby component is given by
(cf. Eryilmaz, 2012)

P{T™>0\=P{X i)

A OO N LTy o OdF
n-k+l:n>t}+B(n_k+1’k) Io G x) (‘C)d (x),

where T denotes the lifetime of the k-out-of-n system

with cold standby having continuous c.d.f. G(). He
derived three different mean residual life functions under
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three conditions, for a k-out-of-n system with a single
cold standby component using dis- tributions of order
statistics. Eryilmaz (2014) derived reliability of a
coherent system equipped with a cold standby
component which may be put into operation at the time
of the first component failure in the system. So, the results
obtained in that paper are useful for a coherent system if
the system has a probability of failure at the time of the
first component failure. Later, Franko ef al. (2015)
generalized this case by considering that standby
component may be put into operation at the time of the

sth component failure, s = kg , k® +1,..., Z,, > Where

k is the minimum number of failed components that

causes the system failure, whereas Z is the maximum

number of failed components so that system can still
operate. Obviously, in this case, the system has a
probability of failure at the time of the sth component
failure.

2.2 System equipped with hot standby component

Boland et al. (1988) introduced a measure of
component importance (termed as redundancy
importance) for a coherent system in which one or more
active redundant component(s) is/are allocated at the
component level. The measure ‘redundancy importance’
of a component is defined in that paper as the
improvement in reliability of the system by allocating
an active redundancy with that component. They
compared redun- dancy importance of a component with
(Birnbaum) reliability importance and structural
importance of a component in a coherent system. Boland
et al. (1992) considered a two-component series system
and formed two systems — one by allocating an active
redundancy in parallel with the first component, and
another by allocating the same active redundancy with
the second component. They discussed the conditions
under which one system is stochastically more favorable
than another as follows. Let us consider a series system
consisting of two components having lifetimes X, and
X,which are independent and non-negative. Also assume
that a spare component having lifetime Y (independent
of X, and X)) is available for active redundancy with
one of the components in the system. Let

: =min{max(X,Y), X,}
and
"= min X, max(X,, Y)}.
Boland et al. (1992) proved that X, < X, if, and

only if, Tl* 2. T;. They also considered the problem



of allocating a redundant component in a k-out-of-n
system with independent components. Let X, X, ..., X
be the lifetimes of n independent components and let

X, =X e X
denote the kth largest order statistic so that X, > X,

=
> .2 XM. If T, denotes the lifetime of a k-out-of-n

system, then 7, = X, = ={X, . e Then, for an
active redundancy with hfetlme Y, independent of {X,

X, ..., X }, Boland et al. (1992) showed that X, < X,
if, and only if,

{max()(p Y)a Xza "")(n}[k] S st {Xp max Xzs Y)a s *Xv,,}[k]a

for k=1, 2, ..., n. So, this result concludes that, it is
stochastically optimal always to allocate the active
redundant component to the stochastically weakest
component for stochastically ordered component
lifetimes. Singh and Misra (1994) considered the same
two-component series system with active redundancy as
Boland et al. (1992), and showed with an example that
unlike stochastic ordering, in general, the lifetime of the
two systems cannot be compared in failure rate ordering.
They extended the above mentioned results of Boland
et al. (1992) to stochastic precedence order. They

established that X, < X is a sufficient condition for
T 2, T, to hold. They also showed that if X, < X,
thenfork=1,2,...,n

P({max(X, Y), X, “"Xn}m > {X, max(X,, ), '"’Xn}[k])
2 P({X,,max(X,,Y), s X} > max(X,Y ), X, 0 X} ).

Valdés and Zequeirab (2003) considered the same
systems as of Boland et al. (1992) but with two different
active standby components, and compared the
lifetimes of the two systems in stochastic order and in
failure rate order. With Y, and Y, as lifetimes of two
different spares, 1ndependent of components having

lifetimes X, and X, they compared the lifetimes of U |
and U ; defined as
X,Y),X,} and

Ul* = min{max(

U; = min{X, max(X,, Y,)}.
They showed that if either of the sets of conditions

(a) {X] Sst ]_st 2}
(b) {X < X XI Ssl YI’X — st 2}
holds, then U1 2, U; . Let us denote the failure

RASHI 1 (1) : (2016)

19

Kundu and Nanda

rate functions of the random variables X, X, ¥, and
Y,, respectively, by A, (), A, (), i, ()and 4, (). They
showed that if

i A, (n>0fort>0,

(i) 11 ® 2 max { ;Lz ®, Hy 0},

(i) p,(6) 2 p, (1), fort 20,
iv) a@®= /12 @t/ /11 (¢) is non-increasing in >0,

then U

1—1

U Romera et al. (2004) also considered

the same systems with two different active redundant
components, and found sufficient conditions under which
one system dominates another in probability order.
Suppose F 0, F 0, (_;1 () and 62 () are the survival
functions of X, X, ¥,
that if

()X, < X,

(ii) F2 (x) G1 (x) >

and Y, respectively. They showed

F () G, (9, x>0,

then U, ZprU;.
allocating both the spares with each component

alternatively so that the lifetimes become
V,= min{max(X,, Y,), max(X,, ¥))}

They also formed two systems by

and
V,=min{max(X,, Y,), max(X,, Y},

and showed that
X, <, X, Y <

hr 1

—/u Y -= V > VZ'

They also considered the allocation of active
redundancy to k-out-of-n system and obtained similar
results. Valdés and Zequeira (2006) compared the
lifetimes V, and ¥, in the failure rate order. If

®»  ®>0,:>0,

(11) X <hr 2>
(iii) « (?) is non-increasing,

then ¥/, <, V,. They also showed that

hr

<

LO 224, 0=V, <V,
Let 7 () and r,(?) denote the reversed hazard rate
functions of X, and X, respectively. Brito ef al. (2011)
showed that if

() X=stY,i=

(i) X <, X

1,2,
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(i) ¥ (&) = r,()/r (1) (t > 0) is increasing,

then V, < . V,. It is observed that if ¥ (z) < 1/2, then
the above result is satisfied without any condition on
Y (t). Further, if X,= Y, i=1, 2, and 7, r,are
proportional, then V', < V. ifand only if X, < X
Valdés et al. (2010) considered an n-component
series system and formed two systems by allocating an
active redundancy in parallel with the first component,
and by allocating another active redundancy with the
second component. They compared the lifetimes of such
series systems in increasing concave order. Let X, X,

..., X be the lifetimes of n independent components, and
let ¥, Y, be those of the two independent spares. Write

U,=min{max(X,, Y), X,, Z}
and
U,=min{X,, max(X,, Y,), Z},
where Z=min{X, X, ..., X }. Then, Valdés et al. (2010)

derived that if any one of

@4X, <,

— icv

XZ’ Y] 2st YZ

b X< X, X < Y, X, > 7Y,

1 —icv — st

holds, then U, > U,. They also compared the lifetimes

of series systems formed by allocating two different
active redundancies at the first two components
alternatively, i.e., by writing

V,=min{max(X,, Y,), max(X,, Y,), Z}
and
V,=min{max(X,, Y,), max(X,, Y)), Z}.

They showed that if any one of

(a) X] S th2 and YI 2 hr Y 4

2

b X, <, X,andY, 2> Y

— hr 2
holds, then ¥, > pr V,. Now, suppose X,=st Y, i=1,2.1f
any one of
(a) X, < hr X, (X] < thz)
(b) ‘XY.Z S hr XI (‘Xv.Z S rh XI)’

holds, then V', < ” V,.Misraetal. (2011) also considered
the same systems as those of Vald'es et al. (2010) and
provided some additional conditions under which one
system dominates the other in stochastic precedence
order. They obtained that if one of the conditions
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(a) XI S st XZ and YZ < stXI(XZ) < st YI’

(b) XI S stXZ’ XI S st YI’ and YZ S hr YI’
(C) XI S stXZ’ YZ S stXZ’ and YZ S rh YI’
(d) ‘XvZ S .wXI and YI < S[XI(XZ) S st YZ’

(e) X2 S .wXI’ XZ S st YZ’ and Y] S hr YZ
(ﬂ X? <le1’ Y] < X and Y] S rh Y2

2 = =5

holds, then V', > Vo They also obtained the conditions
under which the two systems dominate one another in
failure rate and in reversed failure rate orders when each
spare and its associated component are stochastically
equal.

2.3 Study of a system equipped with general
standby compo- nent

After Cha et al. (2008) developed a general standby
model for a single-component system based on the
concept of accelerated life model, significant works have
been done in this field. The reliability of the general
standby system as obtained by Cha et al. (2008) is given
in(1.1). Liet al. (2009) investigated the general standby
system and derived some stochastic comparison results
on the lifetimes of the systems. Denote the lifetime of a
general standby system composed of an active
component with lifetime X and a standby component
with lifetime Y'by 7', ®r Li et al. (2009) derived that

YI Shr Y2::> Tx@ Y, SstTXGE Y,

They showed with an example that the condition on
hazard rate order cannot be replaced by stochastic order
to yield the same result. They also derived that if the
conditions

(i) (u—w(u)) isincreasing in u>0,
(i) @'(w) >y " (u)foranyu>0,

(iii) Y is IFR (increasing failure rate)
(lV) Xl S stXZ

hold, then T, ® <, T ®r Again, if
Satx,

(1) (u - @ (w)) is increasing in u >0,
(1) @ (u) = ¥ (u) for any u >0,
(ii1) ¥ is DRHR (decreasing in reversed hazard rate)
(iv) X/ < erz
hold, then T

X ® T L@ It is to be mentioned here

that a random variable having survival function £ and
distribution function F is said to be IFR (resp. DRHR)
if 7 (resp. F) is log concave. Li et al. (2009) also



compared lifetimes of two-component series system
containing a general standby component. Li et al. (2013)
considered a parallel system and a series system, each
with two active components and one general standby,
and derived some stochastic comparison results for the
two systems. Suppose X, X, and Y are mutually
independent, and U =max{T % ® X} and U,=max{X,,

T x21 ® y}'
Li et al. (2013) obtained that if

(a) (u- @ (v)) is increasing in u >0,
(b) w (v) -7 (u) is increasing in u >0,
(c) Y isIFR

DX <,X

= rh "2

then U, < U,. This result indicates that, for a two

component parallel system, when the standby component
is IFR, it is stochastically better to allocate the standby
to the component with larger life (in terms of reversed
hazard rate order). Now, for a series system with two
components and one general standby, denote

W, =min{T, ,,,X}and W,=min{X, T . }.
Li et al. (2009) showed that
(1) XI S st XZ = W] S pr WZ’

(11) XI S thZ :> Wl S st WZ'
For a series system with two components and two general

standbys, write

lemin{TXI ® YI,TX~7 ® Yz}and
Z,= min{TX1® vy TX2® v, }.

Li et al. (2013) proved that, if
() o @)=Y w,u>0,
(i) (u — @(u))is increasing in u >0,

Giy X, <, X,,

—Ir

i) Y, <, Y,,

then V, < V.. Hazra and Nanda (2014a) constructed
some standby models with one and two general standby
components, and compared some different series and
parallel systems corresponding to the models with
respect to different stochastic orders.

Papageorgiou and Kokolakis (2010) derived the
reliability function of a two-component parallel system
with (n - 2) warm standby components, where two units
start their operation simultaneously and any one of them
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is replaced instantaneously upon its failure by one of
the (n - 2) warm standbys. Yun and Cha (2010) provided
a method for modeling the general standby system with
a single active and a single general standby component
considering perfect switching of the standby from one
state to another. Here perfect switching means that
switching from warm state to active state is perfect, i.c.,
the standby component does not fail at the time of state
change, and the switch-over is instantaneous. By
imperfect switching we mean that the switching from
warm to active state is instantaneous but not failure-free.
Eryilmaz (2013) investigated the relia- bility properties
of a k-out-of-n system equipped with a single warm
standby component.

Reliability of such a system is given by

F (1)

PAT> 4= PX Blu—k+1.6)

>+

n-k+1:n

XIQ*G(”@((X:,(*X‘»‘ DG (N F (D (),

where T# denotes the lifetime of the k-out-of-n system
with warm standby. Recently Kundu et al. (2015) derived
reliability of a coherent system equipped with a single
general standby component. In their work, standby
component starts to work in cold state, it is switched
over to the warm state after a specified time
u (> 0), before which the system certainly does not fail,
and it starts to work in active state in the usual
environment at the time of sth component failure which
may cause the system failure. They also considered three
different switch-over cases regarding perfectness of the
switching from one state to another state of the standby
component.

3. Component redundancy versus system
redundancy

It is well known that, active redundancy at the
component level is superior to redundancy at the system
level in stochastic orders (cf. Barlow and Proschan, 1975;
Boland ez al., 1988; Boland and El-Neweihi, 1995; Singh
and Singh, 1997). Boland and El-Neweihi (1995)
demonstrated with the help of counterexample that this
principle does not hold in the hazard rate ordering even
for a series system if the spares do not match the original
components in distribution (i.e. non-matching spares).
However, for a k-out- of-n system with iid components
and spares (i.e. matching spares), they conclude that
active redundancy at the component level is better than
redundancy at the system level in the hazard rate
ordering. It is to be mentioned here that a matching spare
means lifetime of the spare component and that of the
original component have the same distribution; otherwise
the spare component is called non-matching spare.
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Singh and Singh (1997) extended this result by
proving that, for a k-out-of-n system with iid components
and spares, active redundancy at the component level is
superior to that at the system level in likelihood ratio
ordering. Misra et al. (2009) proved that, for a coherent
system with iid components and spares, component
redundancy is better than system redundancy in
likelihood ratio order, under a condition on the structure
function of the coherent system. Hazra and Nanda
(2014b) extended this result for up shifted likelihood
ratio order. They proved that, for a coherent system with
iid components and spares, component redundancy is
superior to system redundancy in up shifted hazard rate
order, under some specific conditions. Gupta and Nanda
(2001) obtained a sufficient condition under which the
active redundancy at the component level is superior to
that at the system level in the reversed hazard rate
ordering for any coherent system with iid components
and spares. Hazra and Nanda (2014b) extended the result
of Gupta and Nanda (2001) to up shifted reversed hazard
rate order.

In case of non-matching spares, Misra et al. (2009)
provided a condition under which the redundancy at the
component level is better than the redundancy at the
system level in the reversed hazard rate order, for a
coherent system with iid components and iid non-
matching spares. Hazra and Nanda (2014b) extended
this result to the case of up shifted reversed hazard rate
order, under some additional conditions. They also
showed that, for a k-out-of-n system with non-iid
components and iid spares (non-matching), redundancy
at the component level is always superior to that at the
system level in stochastic precedence order.

In case of standby (cold) redundancy, Shen and Xie
(1991) showed that unlike active redundancy, standby
redundancy at the component level is not always better
than that at the system level. They showed that
redundancy at the component level is better than
redundancy at the system level for series systems, while
the reverse is true for parallel system. Boland and El-
Neweihi (1992) also obtained this kind of result for
standby redundancy in stochastic order. Meng (1996)
proved that a series (resp. parallel) system is the only
system for which standby redundancy at the component
level is always stochastically better (resp. worse) than
at the system level. Hazra and Nanda (2014b) showed
that for a k-out-of-n system, component redundancy is
better that the system redundancy in stochastic
precedence order.

4. CONCLUSION

In this paper, we discuss briefly the impact of
different types of standby allocations in different types
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of systems. The present discussion includes a vast
literature review on the development in this field. This
paper helps the reader to overview the developments,
which will help them generate new ideas to extend the
existing results.
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