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ABSTRACT
In this article, we propose the application of a class of weighted likelihood estimators (WLE) based on the minimum distance
approach to the control chart scenario for performing statistical process control. The WLEs are known to be highly robust
under model misspecification and presence of outliers in the data, but they are also asymptotically fully efficient in parametric
models; moreover, in large samples they behave like maximum likelihood estimators at the true model; Markatou et al., 1997,
1998 and Basu et al. (2011). Our proposal aims at building reliable, resistant, robust and highly efficient control limits for
control charts using the WLEs of the process parameters; the subgroup statistics which are then to be plotted on the charts
should be stable in the presence of outliers, so that any slight (assignable) shift in the process could be easily and rapidly
detected. Earlier work in this area motivated towards the goal of building robust control charts were based on the robust
statistics for the location and for the scale; Rocke (1989) and Abu-Shawiesh, 2008, 2009). Many of these methods are robust
under the model misspecifiction and presence of outliers in the data; however all the estimators involved in these procedures
are deficient at the model, some of them severely. Hence, there is no reason to rely more on these statistics if one has a more
efficient and robust option offered by the WLE. The simulation and comparative study of the proposed method are done and
it is observed that in terms of overall performance of the control charts, the proposed method is competitive or better than the
available techniques; moreover if the data are pure and represent the normal model correctly, the proposed method behaves
like the classical technique of Shewhart (1931). To give a clear illustration of the performance of the proposed technique
some real data examples are included.

1.  Introduction

In statistical quality control, the technique of control
charts was introduced by Shewhart (1931, 1939); it is
widely used to detect shift or variation in an industrial
process by differentiating between two causes of
variation: random and assignable. The standard
procedure prescribed in literature for the development
of control charts for an industrial process submitted to
statistical quality control is to take at least 20 subgroup
samples each of size about 5 rationally; compute sample
mean and sample standard deviations of each subgroup
and construct control limits using the mean of the
subgroup sample means and sample standard deviations
in a manner that if the process is in statistical control,
then the subgroup statistics falling beyond these limits
should be ascribed only to random variations. This
charting procedure assumes normality and stability in
the concerned process. If these assumptions hold good,
a quality engineer may easily and quickly detect any
assignable variation in the process with the help of these
charts and may send an alarm to the manager for possible
corrective measures which in turn minimize the losses
due to scraps to a great extent. Duncan (1953) and
Cowden (1957).

Shewhart charts perform poorly under the model
misspecification and presence of outliers in the data,
since control limits for the charts are based on statistics
sample mean and sample standard deviation. These
statistics are known to be highly non-robust and
nonresistant even under slight deviations from the model
assumptions and a small contamination in the data. Hence
it becomes very difficult to detect any intermittent
behavior in the process using the control limits based on
these statistics. The method we are going to propose here
aims at building resistant and robust control limits for
the control charts; the subgroup statistics which are to
be plotted on the charts should be sensitive to outliers,
so that prompt and early detection of any systematic
variation in the process could be easily possible. The
proposed technique can ably ameliorate the risk
engendered by the possibility of the model
misspecification and contamination in the data.

Past works in this field motivated towards the goal
of building robust control charts were based on the robust
statistics for the location (e.g. sample median, trimmed
mean etc) and for the scale (e.g. sample median absolute
deviation, sample inter-quartile range etc). In this regard
Ferrell (1953) introduced a method to determine control
limits using the median of subgroup mid-ranges and the
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median of subgroup ranges; Langenberg and Iglewicz
(1986) established a method for mean and range charts
with control limits determined by the trimmed mean of
the subgroup means and the trimmed mean of the
subgroup ranges; Iglewicz and Hoaglin (1987) and White
and Schroeder (1987) introduced the method of plotting
subgroup boxplots based on the subgroup median and
the subgroup inter-quartile range (IQR); Rocke (1989)
proposed the methods of constructing control charts
based on different combination of subgroup statistics
for location (e.g. mean, median) and for scale (e.g. range
and IQR) with control limits calculated from the trimmed
mean of subgroup means; Rocke (1992) proposed the
method of construction control charts for mean and range
with control limits determined from the average subgroup
IQR; Abu-Shawiesh (2009) proposed method of
constructing control chart for mean based on subgroup
median and MAD, Abu-Shawiesh (2008) introduced S
control chart based on subgroup MAD. The primary
motivation in most of these papers has been to find a
quick and easy solution to the robustness problem of the
subgroup statistics. Among all the robust statistics used
in these papers for the location and scale parameters,
subgroup median and subgroup MAD keep maximal
breakdown property, but these two are also highly
inefficient compared to the sample mean and sample
standard deviation respectively. However the control
charts introduced by Ferrell (1953) and Langenberg and
Iglewicz (1986) are expected to perform better than the
classical method under contamination in the data; also
the methods of control charting proposed by Rocke
(1989, 1992) have good properties in terms of robustness
and may perform better than any earlier techniques under
deviation from the model assumptions and impurities in
the data. Similar points are observed in the techniques
suggested by Abu-Shawiesh (2008, 2009). It appears,
however all these methods in the literature only provide
secondary consideration to the issue of the efficiency of
the method when the observations are actually realized
from the pure data without contamination, thus
sacrificing some reliability at the true model.

The WLEs come as solutions of weighted likelihood
estimating equations constructed based on the minimum
distance approach whereas the weights are so constructed
as to discount the effect of the observations incompatible
with the rest of the data. These estimators are known to
be highly robust under the model misspecification and
contamination in the data. Also under the normality
assumptions they are asymptotically efficient estimators
of the concerned parameters. The corresponding
influence function comes out to be unbounded, as would
be necessary for full asymptotic efficiency; moreover
this method behaves like the maximum likelihood at the

true model. See Basu and Lindsay (1994) and Basu et al
(2011) for a comprehensive description.

We shall use a weighted likelihood estimating
equation approach which follows in a natural way from
some density-based minimum distance estimating
equations. The weight for an observation ranges from 0
to 1 depending on the degree of deviation of the
corresponding observation from the model in relation
to the rest of the data. For example when the general
trend in the data wholly follows a model pattern, the
observations may all get weights close to 1. On the other
hand when the majority of the data follow the model,
one (or a few) discrepant point(s) may get weight(s) close
to zero. Solving the weighted likelihood equations, which
are a random linear combinations of likelihood score
functions of observations equated to zero, produce the
WLEs. This approach was initially introduced by Green
(1984); later work in this area include Markatou et al.
(1997, 1998) and Basu and Lindsay (2004).

Given a data point x in the sample space, lets us
consider a (relative) residual function δ (x; Fθ ; Fn) where
Fθ is the distribution function of the model, and Fn is
the empirical distribution function. Let w (.) be the weight
function based on the residual δ and a tuning parameter

say c. Now, one can have the WLEs  as the solution
of the weighted likelihood equations

(1)

where uθ (x) is the likelihood score corresponding to
the observation x.

The simple form of equation (1) provides a natural
algorithm based on iterative reweighting. And at the end,
the final fitted weights indicate which of those points
were downweighted in the final solution relative to the
MLE. It should be noted that the (relative) residual
function is constructed in such a way that it can take
values in  while the weight function is uni-modal
and takes value in [0, 1].

Evidently, the weight function plays a vital role in
the construction of the weighted likelihood procedure.
The decision about the weight function is a very crucial
step towards the process of finding the robust and highly
efficient weighted likelihood estimators. So, the weight
function should be carefully chosen which can serve the
purpose at hand. The criterion for selection of the weight
function is (i) it should be defined from  to [0,1],
(ii) it should attain maximum value only at zero and
decreases steadily in a smooth manner on either side of
its domain.
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Keeping these properties in mind three different
weight functions are constructed as

w1 (c, δ ) = exp (– cδ2), (2)
w2 (c, δ ) = (1 + cδ – clog(1+ δ )–1, (3)
w3 (c, δ ) = ((1 + δ ) exp (– δ ))c, (4)

Here δ is the residual defined in equation (1) and c
is called the tuning parameter of weight function, it
controls the nature of weight function. These weight
functions have also been used by other authors like
Banerjee et al. (2014) and Biswas et al. (2015).

In this article, we implement the method of
construction of weights based on model density and
kernel density estimate discussed in Markatou et al.
(1997, 1998). Apart from this method, we work with
a weight function designed specially to serve the
purpose.

We propose the method of constructing the control
charts for  and S with control limits established based
on subgroup WLEs while subgroup sample mean and
sample standard deviation are to be plotted on control
charts. Thus one can claim to have reliable, resistant,
robust and highly efficient  and S control charts
established on the basis of the proposed method.

2.   Proposal

In this section, we discuss the WLE approach and
different methods of construction of  and S charts.
The WLE approach is illustrated through a method based
on density divergences for finding the (relative) residual
corresponding to a data with a typical weight function.
Three control charting procedures for  and S are taken
into account based on estimates of the process mean and
process standard deviation used to establish the control
limits are (i) the classical approach of Shewhart (1931)
uses usual statistics mean of sample means and mean of
sample standard deviations, (ii) the recently developed
robust control charts by Abu-Shawiesh (2008, 2009)
considers mean of sample medians and mean of sample
median absolute deviations, and (iii) the proposed
method mean of sample weighted means and mean of
weighted standard deviations. The reason behind
comparing performance of our proposed technique with
the second procedure is simply due to this recently
developed technique is claimed to perform better than
the earlier development in robust charting procedures.

2.1  Weighted likelihood approach

This approach deals with methods for constructing
weights with the right properties and solving the weighted
likelihood equations (1) to generate the weighted
likelihood estimators. We illustrate here use of this

technique with three methods of creating the relative
residuals and three weight functions which can be used
to solve the weight equations.

2.1.1  Method 1

This method based on density based divergences is
well known for simultaneously providing robust and
efficient estimators of θ ; for more details refer to
Markatou et al. (1997, 1998) and Basu et al. (2011).

For a given observation x from a population density
fθ , one can construct the (relative) residual function as

(5)

where  is smoothed model density and  is the

smoothed kernel density estimate with the smoothing
parameter h; the ordinary model density is denoted by
fθ .

Here both the data as well as the model are smoothed,
this approach has certain advantages; over the usual
method of smoothing the data alone, this is due to the
fact that, if the model is true, then δ(x) converges to zero
with probability one and this holds even in case of a
fixed value of the smoothing parameter h.

2.1.2  Method 2

It is based on controlling the tail probabilities. A

tuning parameter  denotes the proportion of outliers
to the down-weighted on either tail. The relative residual
at a given value compares the probabilities of getting
more extreme observations in the given sample and under
the model respectively.

Let for a given observation x; Fn(x), Sn(x), Fθ (x),
and Sθ (x) be the empirical distribution function, the
empirical survival function, the model distribution
function and the model survival function respectively.
Then one can construct the (relative) residual function
as

(6)

The reason behind this typical residual function is
due to the fact that generally outliers belong to either
right-tail of the model for which Fθ (x)  1 – p or left-
tail of the model for which Fθ (x)  p, and to ascertain
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the very reason the method itself compares the empirical
survival function Sn(x) with the survival function Sθ (x)
of the model in case of the right-tail observations and
the empirical distribution function Fn(x) with the
distribution function Fθ(x) in case of left-tail
observations. The remaining (1– 2p) fraction of the
observations which are lying in the central part of the
assumed model and for which p < Fθ (x) < 1 – p are
attached with weights of one. Hence, we can claim that
this method is robust under the presence of outliers in
the data set as it downweights 100p% observations on
each tail if they are inconsistent with the model. However
all the weights converge to one under the pure model
and the method behaves like the maximum likelihood
for large n.

Method 2 is based on the development in Biswas
et al. (2015).

2.1.3  Method 3

This method is based on the probabilities of the
different windows over the support. For each given
observation, it compares the empirical probability of the
data with the assumed model probability within the
neighborhood of the data point under consideration. Here
the neighborhood of a given observation x is defined by
the window [x – h, x + h] where is termed as

bandwidth parameter, a is a positive constant, and σ is
the standard deviation of the assumed model estimated
robustly from the data.

Given observation x, one can construct the residual
function as

(7)

The neighborhood of a given observation x is the

window [x – h, x + h] where is termed as

bandwidth parameter, a is a positive constant, and σ is
the standard deviation of the assumed model estimated
robustly from the data.

This procedure of particular residual function can
be thought of implementing the fact that the sparsity of
the observations near and around an outlying data point
as compared with the assumed model, could produce
large values of the relative residual. To understand this
technique more clearly, let us consider an outlier x present
in the data set and the numerator of the residual function
(7), which is actually the fraction of the observations
present in [x – h, x + h], comes out to be very unusual if
compared with the denominator, which is the probability
that an observation lies within range [x – h, x + h]

calculated based on the assumed model and this in turn
drives the relative residual function to be either closer
to – 1 or ∞. The situation when residual comes out be
zero implies that distribution of the data set around the
observation is consistent with the assumed model
distribution around the same.

Method 3 is based on the development in Banerjee
et al. (2014).

2.2  Control Chart for  and S

One can construct classical control charts for statistics
T of process parameter θ by evaluating the control limits
say upper control limit (UCL), central line (CL) and
lower control limit (LCL) as given;

UCL = μT + kσT ;
CL = μT ;
LCL = μT – kσT : (8)

Here μT = E(T) and = V (T) are the mean and
variance of statistics T and function of location μ and
scale parameter σ of the process respectively.  And in
case the standards of the process are not known, one can
build the above control limits by replacing the process
parameters with their unbiased estimates based on the
data. The value of k should be determined in such a
manner that if the process is in the state of statistical
control, then the probability of a subgroup statistic falling
beyond these limits is scarce and if this happens one
may ascribe it to intermittent behavior in the process.
Here we consider k = 3, which means that probability of
a subgroup sending a out of control signal is only about
0.0027 under the normality assumptions.

Now, consider random sample of observations from
a manufacturing process and let xij be the ith observation
in the jth subgroup or sample in the data, where i = 1, 2,
..... n and j = 1, 2, ......, m.

The overall sample mean and standard deviation are

.

The overall sample MED and MAD are

On Robust Alternatives to  and S Control Charts
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Let us consider wij be the weight allocated to
ith observation in the jth subgroup in the data, where
i = 1, 2, ....., n, and j = 1, 2, ......, m.  The overall sample
weighted mean and standard deviation are

2.2.1  Shewhart  and S Charts

The classical  and S charts are framed to detect
the shift in the process average μ and the shift in the
process standard deviation σ respectively. The classical
control limits calculated based on the values of sample
means and sample standard deviations are generally non-
robust. And the presence of a single large outlier in any
of the subgroups can cause these limits to be almost
ineffective in detecting the assignable variation in the
process. Montgomery, (2007).

Given the standards of the process μ and σ are
unknown (as they usually will be). The standards are
replaced by their unbiased estimates function of sample
mean and sample standard deviation from the data in
the equation (8).

The control limits for  chart are

(9)

The control limits for s chart are

(10)

Here

2.2.2  Control Charts based on the Median and
the MAD

The sample median (MED) and the median
absolute deviation from the sample median (MAD)
are the robust estimates of the parameters μ and σ,
and could be used to construct the control limits for
the charts. The control limits constructed based on
MED and MAD are available in literature.
(Abu-Shawiesh, 2008, 2009).

As the standards of the process μ and σ are unknown,
the standards are replaced by their unbiased estimates
functions of sample MED and sample MAD from the
data in the equation (8).

The control limits for  chart are

(11)

The control limits for s chart are

(12)

Here

and bn is called correction factor, deduced by Rousseeuw
and Croux (1993).
Table 1 : The value of correction factor bn for

different subgroup sample size n

n 2 3 4 5 6 7 8 9 n > 9

bn 1.196 1.495 1.363 1.206 1.200 1.140 1.129 1.107

2.2.3  Control charts based on the WLE approach
So far we have discussed two methods to construct

the control limits for  and s charts. The first method
is based on the MLEs of the process parameters while
the second approach is based on robust estimates MED
and MAD of the process parameters. The first one is
not robust under the presence of outliers in the subgroup
samples. The second one is robust but lacking in
efficiency.

Dubey and Basu
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Table 2 : The control limits for chloride content data computed by Shewhart, MED-MAD, and WLE
methods. The Method 1 with all the three weight functions used to calculate WLEs

Classical MED-MAD WLE
Method

w1(c = 0.1) w2(c = 0.3) w3(c = 0.3)
Control limits for  chart

LCL 0.383811 0.426673 0.410839 0.410734 0.410742
CL 0.562813 0.554688 0.559099 0.559075 0.559060
UCL 0.741814 0.682702 0.707359 0.707417 0.707378

Control limits for s chart

LCL 0.003855 0.014322 0.003193 0.003194 0.003194
CL 0.126953 0.087103 0.105151 0.105208 0.105192
UCL 0.250052 0.167261 0.207109 0.207222 0.207189

Table 3 : The control limits for chloride content data computed by Shewhart, MED-MAD, and WLE methods.
The method 2 with all the three weight functions used to calculate WLEs, where the tail probability
p = 0.5

Classical MED-MAD WLE
Method

w1(c = 0.001) w2(c = 0.015) w3(c = 0.015)
Control limits for  chart
LCL 0.383811 0.426673 0.413043 0.400252 0.400401
CL 0.562813 0.554688 0.559779 0.561844 0.561784
UCL 0.741814 0.682702 0.706515 0.723437 0.723167

Control limits for s chart
LCL 0.003855 0.014322 0.00316 0.003480 0.003475
CL 0.126953 0.087103 0.10407 0.114606 0.114458
UCL 0.250052 0.167261 0.20498 0.225732 0.225440

Table 4: The control limits for chloride content data computed by Shewhart, MED-MAD, and WLE
methods. The method 3 with all the three weight functions used to calculate WLEs, where the
window constant a = 1

Classical MED-MAD WLE
Method

w1(c = 0.01) w2(c = 0.06) w3(c = 0.05)
Control limits for  chart
LCL 0.383811 0.426673 0.410702 0.400170 0.400035
CL 0.562813 0.554688 0.558946 0.561627 0.561822
UCL 0.741814 0.682702 0.707190 0.723083 0.723609

Control limits for s chart
LCL 0.003855 0.014322 0.003192 0.003477 0.003484
CL 0.126953 0.087103 0.105139 0.114510 0.114744
UCL 0.250052 0.167261 0.207086 0.225542 0.226005

On Robust Alternatives to  and S Control Charts
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Now, we propose the method of constructing the
control limits with the help of the WLEs of the process
parameters. The WLEs are known to be robust,
asymptotically fully efficient and unbiased under the
normality assumptions; moreover they behave like the
MLEs when the model is true; for more details refer to
Basu et al. (2011). Hence by this approach, one can
claim to have control limits which are robust and highly
efficient. The control limits thus computed are capable
to detect a slight assignable shift in the process quickly.

As the standards of the process μ and σ are unknown,
the standards are replaced by their unbiased estimates
functions of weighted sample mean and weighted sample
standard deviation from the data in the equation (8).

The control limits for  chart are

(13)

The control limits for s chart are

(14)

Here

3.  Chloride content data example

The present data contains the observations of the
chloride content in soda ash given the upper
specification limit (USL) 1 per cent measured at the
fixed times 0, 4, 8, 12, 16 and 20 hrs in a day for 16
days. There are 16 subgroups or samples each of size 6
in the data. The subgroups are rationally taken.

Our aim is to construct robust  and the s charts.
We plot the usual subgroup statistics sample mean and
sample standard deviation, but we use all the three
methods to compute the control limits and lastly we
make a comparison of first two methods with the last
the proposed one.

The computed values of control limits computed
using Shewhart, MED-MAD, and WLE methods are
tabulated in the tables 2, 3, and 4. Looking at the
tabulated values of the control limits, one easily get the
idea that the control limit calculated by using the WLEs
are more appropriate and robust than the usual method
of Shewhart charts. Moreover the WLE control limits
are close to those calculated by using MED and MAD
estimates.

Fig. 1 : Chloride content data:  Chart

Dubey and Basu
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Now we give the estimates of process capability
index, process fallout using these all three estimates of
process parameters given USL = 1%.

Let us define measures of performance and
capability of the process, which is useful given
USL = 1%.

The upper process capability index in per cent

To illustrate the proposed method of constructing
the control limits for  and s charts, we give the control
chart plots with control limits established by classical
method (dotted lines), by MED-MAD method (dashed
lines) and by WLE method based on Method 1 with
weight function W1 (0.1) (solid lines) in the figures 1
and 2.

Fig. 2 : Chloride content data: S Chart

Fig. 3 : Textile Data: X Chart

On Robust Alternatives to  and S Control Charts
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The percentage upper specification band used by
the process as

Normalized USL

Let random variable Z ~ N (0, 1), the upper ppm
(part per million) defective or upper process fallout

Nu = Pr [Z >  Zu] × 106;
To estimate the measures of performance and

capability of the process using the control charts based
on the different methods, we uses the unbiased estimates
of the process mean and standard deviation under the
respective method.

Table 5 : The estimated values of the measures of capability and performance of the process using the
parameter estimates based on usual method, on MED-MAD method and on the WLE method 1
from chloride content data

Classical MED-MAD WLE Method 1
Method

w1(c = 0.1) w2(c = 0.3) w3(c = 0.3)

Cpku 0099.709 0142.013 0121.405 0121.346 0121.369
Pu 0100.291 0070.416 0082.368 0082.408 0082.393
Zu 0002.991 0004.260 0003.642 003.640 0003.641
Nu 1389.041 0010.203 0135.171 0136.107 0135.749

One can observed in the table 5 that estimated
values of the performance and capability of the
process based on the WLE are optimally better than
those calculated by usual statistics. The estimated
values of the performance measures of the process
based on MED and MAD are highly inflated because
these estimates lack in efficiency when compared with
the WLE.

Hence, we recommend these control limits based
on the WLE method to perform statistical process
control on this process in future. One can alternatively
use these control limits to homogenize and revise the
control limits based on Shewhart method. Moreover
the WLE method can be used to quickly and rapidly
find out the very data point present in any subgroup
sample in the data and is responsible for pulling this
subgroup out of the control limits. This may help the
management to find out the exact reason of outlying
subgroup.

4.  Textile Data Example

This data contains measurements on the linear density
of cotton sliver. It is taken from Damyanov and
Germanova-Krasteva (2013) Five measurements
(n = 5) have been made in a period of  20 days (m = 20)
and the linear density has been recorded in Number
metric (Nm). The tabulated values have been multiplied
by 1000 i.e. when the measured value has been Nm 0.345
then the value recorded in the table is 345.

To illustrate the proposed method of constructing
the control limits for  and s charts, we give the
control chart plots with control limits established by
classical method (dotted lines), by MED-MAD
method (dashed lines) and by WLE method based on
Method 2 with weight function W1(0.0001) (solid
lines) and tail probability p = 0.5 in the figures
3 and 4.

Looking at the results in the table 6 and the figures
3 and 4, one can easily find control limits based on
the WLE method more reliable and efficient to
perform statistical process control on this process in
future. Alternatively it can be used to homogenize and
revise control limits based on Shewhart method and
moreover this proposed method can be used to detect
the very data point present in any subgroup sample in
the data and is responsible for pulling this subgroup
out of the control limits, which in turn may help the
management to find out the exact reason of outlying
subgroup.

5.  Simulation Study

In this section, we try to establish our claim that the
proposed method is optimally give better estimates for
location and scale parameters of the process than any
other existing procedure and hence the constructed
control limits are rapid and accurate in detecting out of
control situations if any.

Dubey and Basu
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Fig. 4 : Textile Data: S Chart

Procedure

Step 1. Generate n observations from a (normal)
population or mixture of (normal) populations
(i.e. contaminated normal population) with
parameters say μ and σ2.

Step 2. Calculate the different location and scale
estimates that are sample mean, sample median,
sample weighted mean, sample standard
deviation, sample median absolute deviation
from median and sample weighted standard
deviation.

Step 2. Repeat Step 1 & 2 m times.

Step 3. Find the average of each of the statistics
computed in Step 2.

Step 4. Repeat Step 1, 2 and 3 1000 times.
Step 5. Calculate the mean square errors for each of

the estimates.
We have done this simulation for different

combinations of m and n, the simulation results are
tabulated below. Looking at the tables it is clear that in
the most of the situations the proposed estimates have
lesser mean square error as compared to peer estimators.
Hence one can conclude that the proposed method of
constructing control limits are better and competitive
with the other methods and could rapidly detects any
erroneous points in the data.

Table 6 : The control limits for textile data computed by Shewhart, MED-MAD, and WLE methods. The
method 2 with all the three weight functions used to calculate WLEs, where tail probability
p = 0.5

Classical MED-MAD WLE
Method

w1(c = 0.001) w2(c = 0.015) w3(c = 0.015)
Control limits for x chart
LCL 246.423825 247.562645 247.128327 247.142029 247.142835
CL 252.970000 253.200000 252.974493 252.977160 252.977482
UCL 259.516175 258.837355 258.820659 258.812292 258.812128
Control limits for s chart
LCL 0 0.298252 0 0 0
CL 4.102207 3.484110 3.663541 3.656626 3.656322
UCL 8.569501 6.767125 7.653130 7.638685 7.638050

On Robust Alternatives to  and S Control Charts
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Table 7 : Mean square errors of different location and scale estimates of the process for WLE method 1
with weight function W1(0.01) for n = 5, m = 20

Parameter Population Classical MED-MAD WLE
Method

μ N(0, 1) 00.0100 0.0139 0.0113
0.9N(0,1)+0.1N(25,1) 06.7355 0.3707 0.2991
0.9N(0,1)+0.1N(0,25) 00.0341 0.0185 0.0172
0.8N(0,1)+0.2N(25,1) 25.7342 4.4658 3.8620
0.8N(0,1)+0.2N(0,25) 00.0614 0.0269 0.0278

σ N(0,1) 00.0095 0.0420 0.0556
0.9N(0,1)+0.1N(25,1) 20.2710 0.0376 0.0606
0.9N(0,1)+0.1N(0,25) 00.2810 0.0214 0.0335
0.8N(0,1)+0.2N(25,1) 56.9408 0.2266 0.0656
0.8N(0,1)+0.2N(0,25) 01.0448 0.0749 0.0191

One can noticed the simulation results in the tables
7, 8, 9 and 10, that as the subgroup sample size n
increases, the MSEs for WLE become smaller as
compared to the that of MAD-MED estimators. That is

for large n, the WLEs behave like MLEs if the data are
pure, and act efficiently and robustly better than MLEs
under contamination.

Table 8 : Mean square errors of different location and scale estimates of the process for WLE method 1
with weight functionW1(0.01) for n = 10, m = 20

Parameter Population Classical MED-MAD WLE
Method

μ N(0,1) 00.00493 0.00675 0.00506
0.9N(0,1)+0.1N(25,1) 06.63679 0.05657 0.03796
0.9N(0,1)+0.1N(0,25) 00.01797 0.00873 0.00725
0.8N(0,1)+0.2N(25,1) 25.93464 1.07966 0.83351
0.8N(0,1)+0.2N(0,25) 00.03028 0.01063 0.01157

σ N(0, 1) 00.00350 0.01336 0.01246
0.9N(0,1)+0.1N(25,1) 29.49744 0.06143 0.01413
0.9N(0,1)+0.1N(0,25) 00.40360 0.00992 0.00599
0.8N(0,1)+0.2N(25,1) 72.40148 1.18724 0.01620
0.8N(0,1)+0.2N(0,25) 01.36438 0.05136 0.01758

Table 9 : Mean square errors of different location and scale estimates of the process for WLE method 1
with weight functionW1(0:01) for n = 5, m = 40

Parameter Population Classical MED-MAD WLE
Method

μ N(0, 1) 00.00514 0.00699 0.00601
0.9N(0,1)+0.1N(25,1) 06.52806 0.25291 0.17286
0.9N(0,1)+0.1N(0,25) 00.01722 0.00886 0.00878
0.8N(0,1)+0.2N(25,1) 25.74433 3.70936 2.99403
0.8N(0,1)+0.2N(0,25) 00.02689 0.01282 0.01310

σ N(0, 1) 00.00643 0.03617 0.05330
0.9N(0,1)+0.1N(25,1) 19.5971  0.02281 0.05675
0.9N(0,1)+0.1N(0,25) 00.25547 0.01131 0.03071
0.8N(0,1)+0.2N(25,1) 57.44086 0.20651 0.06165
0.8N(0,1)+0.2N(0,25) 00.99263 0.05895 0.01176
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Table 10 :Mean square errors of different location and scale estimates of the process for WLE method 1
with weight functionW1(0.01) for n = 10, m = 40

Parameter Population Classical MED-MAD WLE
Method

μ N(0, 1) 00.00235 0.00305 0.00242
0.9N(0;1)+0.1N(25,1) 06.47093 0.04562 0.01834
0.9N(0;1)+0.1N(0,25) 00.00836 0.00404 0.00361
0.8N(0;1)+0.2N(25,1) 25.21211 0.84980 0.57789
0.8N(0;1)+0.2N(0,25) 00.01447 0.00516 0.00537

σ N(0,1) 00.00202 0.01012 0.01106
0.9N(0,1)+0.1N(25,1) 29.11023 0.03712 0.01217
0.9N(0,1)+0.1N(0,25) 00.39618 0.00557 0.00307
0.8N(0,1)+0.2N(25,1) 71.90268 0.94660 0.01315
0.8N(0,1)+0.2N(0,25) 01.36868 0.04775 0.01329

CONCLUSION :

In this paper, we have proposed a robust alternative

for constructing the control limits for  and S control
charts based on a minimum distance approach. This
proposal aims at building resistant control limits for the
control charts; the subgroup statistics which are to be
plotted on the charts should be sensitive to outliers, so
that any slight shift in the process could be easily and
rapidly detected. To give a clear illustrations of the
proposed method, two real data examples and a
simulation study has been given. It is observed that the
control charts established by the proposed technique
can ameliorate the troubles engendered by presence of
the possible outliers in the data and thus perform
optimally or competitively better than the available
techniques.
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